
Direct Reflection
for Free!

If you have
evaluation  
in your
language...

you should  
be able to
evaluate
quasiquoted
terms for free!

If you have
type-checking
in your
language...

you should 
be able to 
type-check
quasiquoted
terms for free!

If you have  
a parser  
for your
language...

you should
have parser
reflection  
for free!

Problem and Motivation
Haskell is considered to be one of the best in class
for language implementations. It has been the
metalanguage of choice for languages such as  
Elm, PureScript and Idris, and many toy languages.

However, adding a metaprogramming system,
even for toy languages, is a cumbersome task
that makes maintenance costly.

Both implementing a metaprogramming feature in
the first place and keeping it updated to work with
any change to the language or the abstract syntax
tree (AST) is costly, since that feature would depend
on the shape of the entire AST  
— namely quasiquotation is such a feature.

For example, the Idris compiler suffers from this
problem: Its implementation of quotation and
unquotation is 1200 lines of Haskell,  
accompanied by 2500 lines of Idris library code to
make that work, and most of this is boilerplate code.

In order to solve this problem we present a
design pattern to augment existing 
language implementations with
metaprogramming facilities automatically, using
generic programming in the host language!

Here's the recipe!
1) Define an AST data type Exp for your language.

2) Define a type class to express conversion
between a given Haskell type and expressions
of the object language. 
 
 
 
 
 

3) Pick a self-representation in order to capture  
the representation of object language  
syntax trees within the same object language.

• Scott encoding for untyped λ-calculus

• Sums of products for typed λ-calculus with
sums, products and µ-types

4) Define a Data a %> Bridge a instance based
on that representation, to take advantage of 
Haskell's generic programming abilities.

5) Convert any Haskell term of a type with a Data
instance to an object language term, and back. 
Exp itself is one of those types!

class Bridge a where
 reify /0 a 1> Exp
 reflect /0 Exp 1> Maybe a
 ty /0 Ty
(where the last one occurs only for a typed language)

a value

trueness

its Haskell representation

True

its object language representation

True
(if your lang.

has ADTs)

λt.λf.t
(untyped  

λ-calculus and
Scott encoding)

inl ()
(typed λ-calculus

and sums of
products)

a value
Haskell term

that represents it

term in the
object language

AST representing  
that term in Haskell

reification of

that term in the

object language

AST representing

the reified term 

in Haskell

reification of the reification of the term

in the object language

reflection

reification

antiquotation
quotation

Trying the recipe on the
untyped λ-calculus
We pick the Scott encoding as the way to represent
Haskell terms in λ-calculus.

Here's how Scott encoding works in a nutshell: 
 
 
 
 
The idea is to add a λ binding for each constructor
in the type, and constructing the body as an
application of the picked constructor to the other
Scott encoded subterms.

If we can encode any Haskell term in λ-calculus, 
we can also encode the Exp data type in λ-calculus,
which allows us talk about object language ASTs in
the object language! 
 
 
 
 
 
We can write a Data a %> Bridge a instance to do
Scott encoding to a given Haskell value. Data
empowers us to learn the necessary information!

data Exp = Var String | App Exp Exp
 | Abs String Exp | StrLit String
 deriving (Show, Eq, Data, Typeable)

Joomy Korkut 
Princeton University 
Advised by Andrew W. Appel

⌈ Ctor e1 ... en ⌉Scott
=

λ c1 c2 ... cm. ci ⌈e1⌉Scott ... ⌈en⌉Scott

Trying the recipe on the  
typed λ-calculus
For the simply typed λ-calculus extended with
sums, products and µ-types, we pick sums of
products as the way to represent Haskell terms  
in the object language.

Here are some examples of how this encoding
would work: 
 
 
 
 
 
 
The types on the right would be represented by this
AST type for object language types: 
 
 
 
 
 
 
The encoding of Haskell values would look like this: 
 
 
 
 
 
 
 
We can encode Exp terms in Exp as well!

a λ-calculus term

e1 e2

its Haskell representation

App e_1 e_2

λ c1 c2 c3 c4. c2 ⌈e1⌉ ⌈e2⌉ 
λ-calculus term representing a λ-calculus AST

⌈Bool⌉SoP = 1 + 1

⌈Nat⌉SoP = µ N. 1 + N

⌈List Nat⌉SoP = µ L. 1 + ⌈Nat⌉SoP × L

Tying the knot
To complete the easy implementation of a
metaprogramming feature, now all we have to do is
to use reify and reflect, and apply whatever
feature we want to implement in between.

Suppose we want to add quasiquotation and
antiquotation to your language. We will start by
extending our AST for these constructs: 
 
 
 
 
 
The code needed for evaluation of these constructs
only takes a few lines, thanks to our design pattern! 
 
 
 
 
 
 
 
 
Now we can use our quasiquotation system and
splice generated code in our programs.

This feature can be used to implement  
parser reflection (similar to JavaScript's eval) or
type-checker or elaborator reflection (similar to Idris)

Furthermore, implementing a kind of computational
reflection by providing a new λ form with access to
the context is also possible. Easy reuse of efficient
host language code is another benefit of the pattern.

data Ty = TyUnit | TyVoid | TyString
 | Arr Ty Ty | Pair Ty Ty | Sum Ty Ty
 | TyVar String | Mu String Exp 
 deriving (Show, Eq, Data, Typeable)

⌈True⌉SoP = inl() ⌈False⌉SoP = inr()

⌈(S Z) /0 nil⌉SoP = inr(⌈S Z⌉SoP, inl ())

⌈Z⌉SoP = inl() ⌈S Z⌉SoP = inr(inl())

a typed λ-calculus term

e1 e2

its self-representation

inr (inl (⌈e1⌉SoP,⌈e2⌉SoP))

data Exp = ...
 | Quasiquote Exp
 | Antiquote Exp

(assume equirecursive µ-types here for simple representation)

eval' /0 Map String Exp 1> Exp 1> Exp
...
eval' env (Quasiquote e) = reify e
eval' env (Antiquote e) =  
 let Just x = reflect (eval e) in x

(we omit error handling here for brevity)

λ> eval <$> parseExp "~((λ x.x) `(()))" 
Right MkUnit identity  

function
quote of 

unit
splice

