
Direct Reflection for Free!

JOOMY KORKUT, Princeton University, USA

1 PROBLEM ANDMOTIVATION
Haskell is considered to be one of the best in class for language implementations [9]. It has been the
metalanguage of choice for production-ready languages such as Elm, PureScript and Idris, proof
of concept implementations such as Pugs (of Perl 6), and many toy languages. However, adding a
metaprogramming system, even for toy languages, is a cumbersome task that makes maintenance
costly. Both implementing a metaprogramming feature in the first place and keeping it updated to
work with any change to the language or the abstract syntax tree (AST) is costly, since that feature
would depend on the shape of the entire AST — namely quasiquotation [8] is such a feature. For
example, the Idris compiler [4] suffers from this problem: Its implementation of quotation and
unquotation is 1200 lines of Haskell, accompanied by 2500 lines of Idris library code to make that
work, and most of this is boilerplate code.

In order to solve this problem we look for ways to augment existing language implementations
with metaprogramming facilities automatically. If you have evaluation, you should be able to
evaluate quasiquoted terms for free. If you have type-checking, you should be able to type-check
quasiquoted terms for free. If you have a parser, you should have parser reflection for free.

2 BACKGROUND AND RELATEDWORK
For almost two decades, Haskell has been equipped with the Scrap Your Boilerplate [11, 12] style
generic programming, which lets users traverse abstract data types with less boilerplate code. In
modern Haskell, this style is embodied by the Data and Typeable type classes, which can be
derived automatically. These type classes allow representation of types as run-time values, and
inspection of constructors and constructor fields. We leverage this mechanism to achieve our goal.

There is little work on adding metaprogramming facilities automatically to an existing language.
Berger et al. [3] describe a calculus that models both compile-time and run-time homogeneous
generative metaprogramming, and give a recipe for adding metaprogramming to any language.
Their recipe involves creating a new syntactic form for AST terms, while we will take a different
approach in this work. We encode ASTs of a language in the same language instead. Furthermore,
not all metaprogramming is generative, hence we find a method that enables metaprogramming
methods that involve breaking down existing data type and function definitions.

Encoding ASTs in the same language is a well known concept. Especially research in self-
evaluation has generated ways to represent many languages in themselves. The Mogensen
encoding [15] is an encoding of untyped λ-calculus in itself; it combines the Scott encoding [1]
with higher-order abstract syntax [16]. A paper by Stump [19] explains the design decisions behind
a self-representing and self-evaluating language that is more expressive about variable names.
On the implementation side of untyped languages, Lisp’s quotation mechanism and meta-circular
evaluator [14] have inspired further research on metaprogramming in general.
Research on self-evaluation is not limited to untyped languages, there is a long line of work

by Brown and Palsberg [5–7] that defines encodings for languages like System U and System Fω .
However, encoding a language in itself does not need to self-evaluate. Template Haskell [17] is an
example of a compile-time metaprogramming system, where Haskell is represented in itself. The
pattern we describe in this work can be used with any of these encodings.

Author’s address: Joomy Korkut, Princeton University, Princeton, New Jersey, USA, joomy@cs.princeton.edu
ACM member number: 3665406. Entry for ICFP’19 SRC, Graduate Category. Advised by Andrew W. Appel.

3 APPROACH AND UNIQUENESS
In this work, we will present a pattern that takes advantage of generic programming when we
implement toy programming languages in Haskell and decide to add metaprogramming features.
We will show that this pattern can be used to convert any Haskell type (with an instance of the
type classes above), back and forth with our all-time favorite toy language: λ-calculus. We reify
Haskell values into their Scott encodings [1] in the λ-calculus AST, and reflect them back to Haskell
values. This conversion can then be used to add metaprogramming features to the languages we
implement in Haskell, via direct reflection, a technique that makes the language implementation
in the metalanguage a part of the object language’s semantics [2].
Our goal is to capture the representation of object language syntax trees within the same object

language. Initially, it helps to generalize this into the conversion of any metalanguage value into
its encoding in the object language, whose AST is represented by the data type Exp. We define a
type class that encapsulates this conversion in both directions:

class Bridge a where
reify :: a -> Exp
reflect :: Exp -> Maybe a

Once a Bridge instance is defined for a type a, we will have a way to reify it into a representation
in Exp. However, if we only have an Exp, we can only recover a value of the type a if that Exp is a
valid representation of some value.

For example, if our language contains a primitive type like strings, we can define an instance to
declare how they should be converted back and forth:

instance Bridge String where
reify s = StrLit s
reflect (StrLit s) = Just s
reflect _ = Nothing

The reflect function above states that if an expression is not a string literal, represented above
with the constructor StrLit, it is not possible to recover a Haskell string from it.

3.1 λ-calculus and Scott encoding
For a Haskell value C v_1 · · · v_n of type T, where C is the ith constructor out ofm constructors of
T, and C has arity n, the Scott encoding (denoted by ⌈ ⌉) of this value will be⌈

C v_1 · · · v_n
⌉
= λc1 · · · cm .

(
ci ⌈v_1⌉ · · · ⌈v_n⌉

)
For a Haskell data type data Color = Red | Green, Scott encodings of the constructors will be

⌈Red⌉ = λc1 c2. c1 ⌈Green⌉ = λc1 c2. c2

If we decide to add a new constructor Blue to the Color data type, we must update each of the
Scott encodings above accordingly, so that we have:

⌈Red⌉ = λc1 c2 c3. c1 ⌈Green⌉ = λc1 c2 c3. c2 ⌈Blue⌉ = λc1 c2 c3. c3

When we implement λ-calculus in Haskell, we start by defining a data type for our AST, using
Haskell strings for names:

data Exp = Var String | App Exp Exp | Abs String Exp

For metaprogramming, we need a representation of λ-calculus terms within λ-calculus, and a
Bridge instance for Exp would achieve exactly that; it would give us an easy way to convert
between the signified (ones we want to reify) and signifier terms (ones that are the result of
reifying).

2

However, as we develop the language, we often need to add new constructors to the AST. If we
define a Bridge instance now, and addmore constructors to Exp, then the previous Bridge instance
becomes obsolete. Suppose we want to add string literal, quasiquote and antiquote expressions:

data Exp = Var String | App Exp Exp | Abs String Exp
| StrLit String | Quasiquote Exp | Antiquote Exp

How do we make sure that the Bridge instance does not become obsolete? The answer is to avoid
defining a special Bridge instance for the Exp type. Ideally, we would like to have one for free,
based on a different type class. This is where generic programming comes in. Using the Data and
Typeable type classes, we define a Data a => Bridge a instance. Once defined, implementation
of certain metaprogramming features via direct reflection becomes very easy. Now implementing
quasiquotation is just a matter of adding two lines to the evaluation function:

eval (Quasiquote e) = reify e
eval (Antiquote e) = let Just e' = reflect (eval e) in e'

3.2 Typed λ-calculus and the sum-of-products encoding
The same pattern of defining a Data a => Bridge a instance with respect to an encoding of choice
can be applied to typed languages as well. For the simplest example of this, we can look at simply
typed λ-calculus with binary sums and products, unit and void types, and isorecursive (µ) types.
The Haskell implementation for this language would need to have two main data types for its AST:
Ty for types and Exp for terms.

data Ty = TyString | TyInt | Arr Ty Ty | TyUnit | TyVoid
| Pair Ty Ty | Sum Ty Ty | Mu String Ty | TyVar String

In Exp, we introduce Inl and Inr constructors for the sum type, and MkPair for the product type.
Using these types and constructors, we can encode Haskell data types in the sum-of-products style
common in generic programming [13]. For example, the Color type from before would be encoded
in this language as Sum TyUnit (Sum TyUnit TyUnit), which is exactly 1 + 1 + 1, in a more
common notation in type theory. A value of the type Color such as Red would be Inl MkUnit.
A recursive type such as List Int would be encoded as Mu "x" (Sum TyUnit (Pair TyInt

(TyVar "x"))), which corresponds to µx .1 + (Int × x) in the common theoretical notation.
To implement these encodings for a given Haskell type, we have to augment the Bridge type

class with a definition, ty : Ty. For this new Bridge type class, only the Data a => Bridge a
instance is significantly different compared to the one for the untyped λ-calculus1. Once that
instance is written, the implementation of quasiquotation is still only the same two lines.

4 RESULTS AND CONTRIBUTIONS
The design pattern described in this work allows automatic derivation of metaprogramming
features from your language implementation. Our pattern works for both compile-time and
run-time metaprogramming features. The features above are generative, but they also can be
intensional features such as inspecting the context and taking apart function and data type
definitions in and of the object language. This pattern can even be used to implement some form
of computational reflection [10, 18], by reifying the context during run-time for a new special λ
form. Metaprogramming implementations often require significant boilerplate code, and our work
attempts to minimize that by using generic programming.

1The full code is in the repository: http://github.com/joom/direct-reflection-for-free

3

http://github.com/joom/direct-reflection-for-free

REFERENCES
[1] Martin Abadi, Luca Cardelli, and Gordon Plotkin. 1993. Types for the Scott numerals.
[2] Eli Barzilay. 2006. Implementing reflection in Nuprl. Ph.D. Dissertation. Cornell University.
[3] Martin Berger, Laurence Tratt, and Christian Urban. 2017. Modelling Homogeneous Generative Meta-Programming.

ECOOP.
[4] Edwin Brady. 2013. Idris, a general-purpose dependently typed programming language: Design and implementation.

Journal of Functional Programming 23, 5 (2013), 552–593.
[5] Matt Brown and Jens Palsberg. 2015. Self-Representation in Girard’s System U. POPL.
[6] Matt Brown and Jens Palsberg. 2016. Breaking Through the Normalization Barrier: A Self-interpreter for F-omega.

POPL.
[7] Matt Brown and Jens Palsberg. 2017. Typed Self-evaluation via Intensional Type Functions. POPL.
[8] David Raymond Christiansen. 2014. Type-directed elaboration of quasiquotations: a high-level syntax for low-level

reflection. IFL.
[9] Gabriel Gonzalez. [n. d.]. State of theHaskell ecosystem. https://github.com/Gabriel439/post-rfc/blob/master/sotu.md.

([n. d.]). Accessed: 2019-01-30.
[10] Charlotte Herzeel, Pascal Costanza, and Theo D’Hondt. 2008. Reflection for the Masses. In Self-Sustaining Systems,

Robert Hirschfeld and Kim Rose (Eds.). Springer-Verlag, Berlin, Heidelberg, 87–122.
[11] Ralf Lämmel and Simon Peyton Jones. 2003. Scrap your boilerplate - a practical design pattern for generic

programming. TLDI.
[12] Ralf Lämmel and Simon Peyton Jones. 2005. Scrap your boilerplate with class: extensible generic functions. ICFP.
[13] José Pedro Magalhães, Atze Dijkstra, Johan Jeuring, and Andres Löh. 2010. A generic deriving mechanism for Haskell.

ACM Sigplan Notices 45, 11 (2010), 37–48.
[14] John McCarthy and Michael I. Levin. 1965. LISP 1.5 programmer’s manual. MIT press.
[15] Torben Æ. Mogensen. 1992. Efficient self-interpretation in lambda calculus. Journal of Functional Programming 2

(1992), 345–364.
[16] Frank Pfenning and Conal Elliott. 1988. Higher-order abstract syntax. PLDI.
[17] Tim Sheard and Simon Peyton Jones. 2002. Template meta-programming for Haskell. Haskell Workshop.
[18] Brian Cantwell Smith. 1984. Reflection and semantics in LISP. POPL.
[19] Aaron Stump. 2009. Directly reflective meta-programming. Higher-Order and Symbolic Computation 22, 2 (2009),

115–144.

4

https://github.com/Gabriel439/post-rfc/blob/master/sotu.md

	1 Problem and Motivation
	2 Background and Related Work
	3 Approach and Uniqueness
	3.1 Lambda-calculus and Scott encoding
	3.2 Typed lambda-calculus and the sum-of-products encoding

	4 Results and Contributions
	References

