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Abstract

Harper’s 1999 Functional Pearl on regular expression matching is a
strong example of the interplay between programming and proof, and
has been used for many years in introductory functional programming
classes. In this paper, we revisit this algorithm from the point of view
of dependently typed programming. In the process of formalizing the
algorithm and its correctness using the Agda proof assistant, we found
three interesting variations. First, defunctionalizing the matcher allows
Agda to see termination without an explicit metric, and provides a sim-
ple first-order matcher with a clear relationship to the original, giving
an alternative to a later Educational Pearl by Yi. Second, intrinsically
verifying the soundness of the algorithm has useful computational con-
tent, allowing the extraction of matching strings from the parse tree.
Third, while Harper uses a negative definition of standard regular ex-
pressions (no starred subexpression accepts the empty string), using a
syntactic definition of standardness simplifies the staging of the devel-
opment. These variations provide a nice illustration of the benefits of
thinking in a dependently typed language, and have some pedagogical
value for streamlining and extending the presentation of this material.

∗This material is based on research sponsored in part by by The United States Air
Force Research Laboratory under agreement number FA9550-15-1-0053. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of the United States Air
Force Research Laboratory, the U.S. Government or Carnegie Mellon University.
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1 Introduction

Regular expression matching is a venerable problem, studied in many pro-
gramming and theory of computation courses. Harper (Harper, 1999) presents
a higher-order algorithm for regular expression matching, using continuation-
passing to store the remainder of a matching problem when a concatenation is
encountered, while using the ordinary control stack to represent the branch-
ing when an alternation is encountered. The code for the matcher is quite
short, but also quite subtle; the emphasis of Harper’s paper is on how the
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correctness proof for the matcher informs the reader’s understanding of the
code. For example, the first matcher presented has a termination bug, which
is revealed when the induction in the correctness proof breaks down. The
problem can be fixed by restricting the domain of the function to standard
regular expressions, which have no Kleene-stared subexpressions that accept
the empty string, and then using a preprocessor translation to solve the
original problem. Harper’s algorithm has been used in first- and second-year
functional programming courses at Carnegie Mellon for around 20 years, as
a high-water example of integrating programming and program verification.
A later paper by Yi (Yi, 2006) revisits the example, motivated by the au-
thor’s sense that the higher-order matcher is too difficult for students in their
introductory programming course, and gives a first-order matcher based on
compilation to a state machine.

Motivated by its strong interplay between programming and proof and
its pedagogical usefulness, we set out to formalize Harper’s algorithm using
the Agda proof assistant (Norell, 2007), believing that it could be a peda-
gogically useful example of dependently typed programming. The process of
mechanizing the algorithm led us to a few new observations that streamline
and extend its presentation—which was quite surprising to the third author,
who has previously taught this material several times. Our goal in this pa-
per is to document these variations on the matching algorithm, and how the
process of programming it in Agda led us to them.

The three variations are as follows. First, because Agda is a total lan-
guage, we must make the termination of the matcher evident in the code
itself. Harper’s original algorithm can be shown to terminate using lexico-
graphic induction on first the regular expression and second well-founded
induction on the string being matched, but in Agda the latter requires
passing an explicit termination measure. We discovered that defunction-
alizing (Reynolds, 1972) the matcher avoids the explicit termination mea-
sure, because the problematic recursive call is moved from the Kleene star
case to the character literal base case, where it is clear that the string is
getting smaller. The defunctionalized matcher is of interest not only be-
cause programming it in Agda is simpler: it also achieves Yi’s goal of a
first-order matcher in a simple way, which has a clear relationship to the
higher-order matcher. Pedagogically, it could be used at a point in a course
before higher-order functions have been introduced, and it could be used as
a stepping stone to the more sophisticated higher-order matcher.

Second, the matcher discussed in Harper’s paper, whose Agda type is

_accepts_ : RegExp→ String→ Bool
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determines whether or not a string is accepted by a regular expression. How-
ever, for most applications of regexp matching (and for making compelling
homework assignments), it is useful to allow a “bracket” or “grouping” con-
struct that allows the user to specify sub-regular-expressions whose matching
strings should be reported— for example, AG [ .*] TC [(G⊕C) * ] GA for ex-
tracting the parts of a DNA string surrounded by certain signal codes. When
coding a program/proof in a dependently typed language, there is a choice
between “extrinsic” verification (write the simply-typed code, and then prove
it correct) and “intrinsic verification” (fuse the program and proof into one
function, with a dependent type). We have formalized both a straightfor-
ward extrinsic verification, and an intrinsically sound verification1, which
has the dependent type

accepts-intrinsic : (r : RegExp)→ (s : List Char)→ Maybe (s ∈L r)

When this matcher succeeds, it returns the derivation that the string is in
the language of the regexp; completeness, which says that the matcher does
not improperly reject strings, is still proved separately. The reason for this
choice is that the computational content of the soundness proof is relevant to
the above problem: the derivation gives a parse tree, which allows reporting
the matching strings for each specified sub-expression. Indeed, even for the
extrinsic matcher, one can run the separate soundness proof to produce the
matching strings—but running the matcher and then its soundness proof
(which has success of the matcher as a precondition) duplicates work, so
we present the intrinsic version in the paper. Though we were led to this
variation by coding the soundness proof of the matcher using dependent
types, analogous code could be used in a simply typed language, with the
less informative result type Maybe Derivation which does not say what string
and regexp it is a derivation for.

A third variation is that, while Harper uses a negative semantic def-
inition of standard regular expressions (“no subexpression of the form r∗

accepts the empty string”), it is often more convenient in Agda to use posi-
tive/inductive criteria. While formalizing the notion of standard, we realized
that it is possible to instead use a syntactic criterion, generating standard
regular expressions by literals, concatenation, alternation, and Kleene plus
(one or more occurrences) instead of Kleene star (zero or more occurrences),
and omitting the empty string regexp ε. While the syntactic criterion omits
some semantically standard expression (such as (ε · r) *, where r does not

1All formalizations are available from http://github.com/joom/regexp-agda. Use
Agda version 2.4.2.2 with standard library version 0.11
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accept the empty string), it still suffices to define a matcher for all regular
expression. In addition to simplifying the Agda formalization, this obser-
vation has the pedagogical benefit of allowing a self-contained treatment of
these syntactically standard regular expressions.

Though dependently typed programming led us to these new insights
into a problem that has been very thoroughly studied from a very similar
point of view, they can all be ported back to simply-typed languages. Thus,
in addition to being a strong pedagogical example of dependently typed pro-
gramming, these variations on regular expression matching could be used
in introductory programming courses to offer a streamlined treatment—
e.g. using the defunctionalized matcher for only syntactically standard reg-
ular expressions, which still captures the basic interplay between program-
ming and proof—which scales to higher-order matching and more interesting
homework assignments—e.g. by computing matching strings. Therefore,
even though there is existing work on verified parsing of regular expres-
sions and context-free grammars (see (Danielsson, 2010; Ridge, 2011; Firsov
& Uustalu, 2013) for work using other algorithms; Wouter Swierstra and
collaborators also worked on formalizing Harper’s algorithm, but had un-
resolved termination issues2), we believe these new variations on Harper’s
algorithm will be of interest to the dependent types and broader functional
programming communities.

The remainder of this paper is organized as follows. In Section 2, we
define syntactically standard regular expressions. In Section 3, we give an
intrinsically sound defunctionalized matcher, with no explicit termination
measure. In Section 4, we give an intrinsically sound higher-order matcher,
which uses an explicit termination measure, and explain the correspondence
with the defunctionalized matcher. In Section 5, we show that these matchers
suffice to match all regular expressions by translation. In Section 5.1 we
discuss how to extract matching strings.

1.1 Agda Definitions

We assume the reader is familiar with Agda (Norell, 2007) and the notation
from the Agda standard library. Though the Agda library differentiates
between strings (String) and lists of characters (List Char), we will ignore this
distinction in the paper. Because the intrinsically verified matcher returns a
Maybe/option type, it will be useful to use monadic notation for Maybe (in
Haskell terminology, _||_ is mplus and map is fmap):

2personal communication
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return : ∀ {A} → A→ Maybe A
return = just

fail : ∀ {A} → Maybe A
fail = nothing

_»=_ : ∀ {A B} → Maybe A→ (A→ Maybe B)→ Maybe B
just x >>= f = f x
nothing >>= f = nothing

_||_ : ∀ {A} → Maybe A→ Maybe A→ Maybe A
just x | = just x
nothing | y = y

map : ∀ {A B} → (A→ B)→ Maybe A→ Maybe B
map f (just x) = just (f x)
map nothing = nothing

2 Syntactically standard regular expressions

Rather than Harper’s negative semantic criterion (no starred subexpression
accepts the empty string), we use an inductive definition of standard regular
expressions. Compared with the standard grammar of regular expressions,
which includes the regexp matching the empty string (ε), the regexp match-
ing the empty language (∅), character literals, concatenation (r1 · r2), al-
ternation (r1 ⊕s r2), and Kleene star/repetition (r*), we omit ε, and replace
Kleene star with Kleene plus, which represents repetition one or more times.
As an operator on regular languages, Kleene plus (Σ+) is equivalent to Σ·Σ∗,
where Σ∗ is the Kleene star.

In Agda, we define a type of StdRegExp as follows:

data StdRegExp : Set where
∅s : StdRegExp
Lits : Char→ StdRegExp
_·s_ : StdRegExp→ StdRegExp→ StdRegExp
_⊕s_ : StdRegExp→ StdRegExp→ StdRegExp
_+s : StdRegExp→ StdRegExp

∅s is the regular expression matching no strings, Lits is the character literal,
_·s_ is concatenation, _⊕s_ is alternation, and _+s is Kleene plus. We use
the s superscript to differentiate standard regular expressions from the the
full language, which is defined in Section 5.
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Informally, Kleene plus is defined as the least language closed under the
following rules:

s ∈ L(r)
s ∈ L(r +s)

s1s2 = s s1 ∈ L(r) s2 ∈ L(r +s)

s ∈ L(r +s)

In Agda, we represent sets of strings by something analogous to their mem-
bership predicates. For standard regular expressions, we define a binary
relation s ∈Ls r, which means s is in the language of r, by recursion on r,
illustrating how it is possible to compute types based on values in a depen-
dently typed language. This uses an auxiliary, inductively definition relation
s ∈L+ r, represented by an Agda inductively defined datatype family, which
corresponds to the inference rules above.

mutual
_∈Ls_ : List Char→ StdRegExp→ Set
∈Ls ∅s = ⊥

s ∈Ls (Lits c) = s ≡ [c]
s ∈Ls (r1 ⊕s r2) = (s ∈Ls r1) ] (s ∈Ls r2)
s ∈Ls (r1 ·s r2) =
Σ (List Char × List Char) (λ {(p, q)→ (p ++ q ≡ s) × (p ∈Ls r1) × (q ∈Ls r2)})

s ∈Ls (r +s) = s ∈L+ r

data _∈L+_ : List Char→ StdRegExp→ Set where
S+ : ∀ {s r} → s ∈Ls r→ s ∈L+ r
C+ : ∀ {s s1 s2 r} → s1 ++ s2 ≡ s→ s1 ∈Ls r→ s2 ∈L+ r→ s ∈L+ r

Here, ⊥ is the empty Agda type, ] is disjoint union (Either), and × is the
pair type. Σ A (λ x→ B) is an existential/dependent pair, where the type of
the second component depends on the value of the first—because this is not
built in in Agda, it takes a type A and a function from A to Set as arguments.
The notation λ {p→ e} allows a pattern-matching anonymous function. The
function ++ appends lists, and ≡ is Agda’s propositional equality. Thus, in
full, the clause for alternation means “there exist strings p and q such that
appending p and q gives s, where p is in the language of r1 and q is in the
language of r2".

However, is is important to note that these membership “predicates” land
in Set, the Agda type of types, and thus may have computational content.
For example, a witness that s ∈Ls (r1 ⊕ r2) includes a bit (inj1 or inj2) that
tells which possibility was taken, and a witness s ∈L+ r is a non-empty list
of strings matching r, which concatenate to s. Thus, there can be different
witnesses that a string matches a regular expression, such as
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“a” ∈ L(Lits ’a’)
Derivation A :=

“a” ∈ L(Lits ’a’ +s)

“a” ++ “a” = “aaa” “a” ∈ L(Lits ’a’) Derivation A
Derivation B :=

“aa” ∈ L(Lits ’a’ +s)

“a” ++ “aa” = “aaa” Derivation A Derivation BDerivation C :=
“aaa” ∈ L((Lits ’a’ +s) ·s (Lits ’a’ +s))

“aa” ++ “a” = “aaa” Derivation B Derivation ADerivation D :=
“aaa” ∈ L((Lits ’a’ +s) ·s (Lits ’a’ +s))

We will exploit this in Section 5.1 to extract matching strings from such
derivations.

3 Defunctionalized intrinsic matcher

In this section, we define a first-order matcher for standard regular expres-
sions. This is a defunctionalization of Harper’s algorithm, though we will
describe it from first principles. The idea is to generalize from matching
a string s against a regular expression r by adding an additional stack of
regular expressions k that need to be matched against the suffix of s if some
prefix of s matches r. We represent the stack by a list, and say that a string
is in the language of a stack if it splits into strings in the language of each
stack element:

_∈Lk_ : List Char→ List StdRegExp→ Set
s ∈Lk [ ] = s ≡ [ ]

s ∈Lk (r :: rs) =
Σ (List Char × List Char)

(λ {(p, s’)→ (p ++ s’ ≡ s) × (p ∈Ls r) × (s’ ∈Lk rs)})

If the stack is empty, the string also has to be empty. If the stack has a
head, then a prefix of the string should match the head of the list and the
rest of the string should match with the rest of the list.
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3.1 Definition

The soundness part of informal description of the matcher given above trans-
lates into the following dependent type/specification:

match : (r : StdRegExp) (s : List Char) (k : List StdRegExp)
→ Maybe (Σ (List Char × List Char)

(λ {(p, s’)→ (p ++ s’ ≡ s) × (p ∈Ls r) × s’ ∈Lk k}))

This says that the matcher takes a regular expression r, a string s and a
stack k, and, if matching succeeds, returns a splitting (p ++ s’ ≡ s), a
derivation that p is in the language of r and a derivation that s’ is in the
language of the stack k. This specifies the soundness of successful matching,
and has computational content that will let us extract matching strings, but
leaves open the possibility that the matcher fails incorrectly (for example,
the constantly nothing function has this type)—this will be addressed in the
completeness proof below.

The complete code is in Figure 1. Agda can verify that this function
terminates by induction on first the string s, and then the regular expression
r. We now discuss the code case by case.

3.1.1 Base cases

First, the empty language does not accept any string:

match ∅s s k = fail

For character literals

match (Lits c) [ ] k = fail
match (Lits c) (x :: xs) k =

(isEqual x c) >>=
(λ p→ map (λ pf→ ((([c ], xs), cong (λ x→ x :: xs) (sym p), refl, pf)))

(match-helper k xs))

in the first case, if we are trying to match an empty list with a regular
expression that requires a character, the matcher fails. In the next case, the
isEqual x c call has type Maybe (x ≡ c)—i.e. it optionally shows that x is
equal to c. Thus, by the monad bind, when x is not c, the matcher fails,
and when x is c, we try to match the stack k against the suffix xs using
match-helper.

The function match-helper is mutually recursive with our matcher and is
defined as follows:
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match-helper : (k : List StdRegExp)→ (s : List Char)→ Maybe (s ∈Lk k)
match-helper [ ] [ ] = return refl
match-helper [ ] (x :: s) = fail
match-helper (r :: k’) s = match r s k’

It succeeds when matching the empty string against the empty stack, fails
when matching a non-empty string against the empty stack, and otherwise
refers back to match. Relative to Harper’s algorithm, this is the application
function for the defunctionalized continuation.

Returning to the character literal case, if the first character in our list
matches the character literal c, then we call match-helper on the continuation
and the rest of the list, which will produce a derivation of s ∈Lk k if the rest
of the list indeed matches the rest of the StdRegExps in k. The remainder of
the code packages this as a pair showing that therefore the list x :: xs splits
as [x ] ∈Ls (Lit c) and xs ∈Lk k.

Agda’s termination checker is able to verify that, for the call from match
to match-helper and back to match, the string x :: xs becomes xs, and is
therefore smaller, which justifies termination in this case.

3.1.2 Concatenation

match (r1 ·s r2) s k =
map (reassociate-left {R = _·s_} (λ inL inL’→ , refl, inL, inL’))

(match r1 s (r2 :: k))

In the case for concatenation r1 ·s r2, we match against r1 first, and add
r2 to the stack k. Calling match r1 s (r2 :: k) will give us a split xs ++ ys ≡ s
and derivations of xs ∈Ls r1 and ys ∈Lk (r2 :: k). If we unpack the second
derivation (using the definition of ∈Lk and the fact that our continuation list
contains at least one element, r2), we will have another split as ++ bs ≡ ys
and derivations as ∈Ls r2 and bs ∈Lk k. The helper function reassociate-left
states that if we have such a situation, we can reassociate it to show that
xs ++ as matching the entire regular expression r1 ·s r2. Because we will want
to do similar reasoning in the Kleene plus case below, we use a higher-order
function that says that if R is a binary operation on regular expressions that
respects splitting, then given the first kind of splitting, we can produce the
second:

reassociate-left : ∀ {r1 r2 s k} {R : StdRegExp→ StdRegExp→ StdRegExp}
→ (f : ∀ {xs as} → xs ∈Ls r1 → as ∈Ls r2 → ((xs ++ as) ∈Ls R r1 r2))
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→ Σ (λ {(xs, ys)→ (xs ++ ys ≡ s) × xs ∈Ls r1
× Σ (λ {(as, bs)→ (as ++ bs ≡ ys) × as ∈Ls r2 × bs ∈Lk k})})
→ (Σ (λ {(p, s’)→ (p ++ s’ ≡ s) × (p ∈Ls R r1 r2) × s’ ∈Lk k}))

3.1.3 Alternation

match (r1 ⊕s r2) s k =
(map (change-∈L inj1) (match r1 s k)) ||
(map (change-∈L inj2) (match r2 s k))

In the alternation case, we match the string with r1, and if that fails
match with r2 (recall that || handles failure of its first disjunct by trying the
second). If the call match r1 s k succeeds, it will produce a triple splitting s as
p ++ s’, with a derivation of p ∈Ls r1 and s’ ∈Lk k. However the return type
for the alternation case should contain a derivation of type p ∈Ls (r1 ⊕s r2),
so we use the helper function change-∈L, which applies a function to this
position of the result triple, to make the appropriate modification:

change-∈L : {a b d : List Char→ Set} {c : List Char→ List Char→ Set}
→ (∀ {s} → a s→ b s)
→ (Σ (λ {(p, s’)→ (c p s’) × (a p) × (d s’)}))
→ (Σ (λ {(p, s’)→ (c p s’) × (b p) × (d s’)}))

change-∈L f (x, eq, inL, rest) = (x, eq, f inL, rest)

We use change-∈L to apply inj1 or inj2 to the derivation, depending on which
part of the alternation successfully matched the string.

3.1.4 Kleene plus

match (r +s) s k =
(map (change-∈L S+) (match r s k)) ||
(map (reassociate-left {R = λ r → r +s} (λ inL inL’→ C+ refl inL inL’))

(match r s ((r +s) :: k)))

In the Kleene plus case, we first try to match s with just r, and if that
succeeds we apply change-∈L S+ to the derivation since we matched from
the single r case. If this fails, then similar to the ·s case, we try to match a
prefix of the string to r and then the suffix that follows with the continuation
which now includes r +s. Just like in the ·s case, we use reassociate-left in
order to get that our splitting of s matches the entire starting r.
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mutual
match : (r : StdRegExp) (s : List Char) (k : List StdRegExp)
→ Maybe (Σ (List Char × List Char)

(λ {(p, s’)→ (p ++ s’ ≡ s) × (p ∈Ls r) × s’ ∈Lk k}))
match ∅s s k = fail
match (Lits c) [ ] k = fail
match (Lits c) (x :: xs) k =

(isEqual x c) >>=
(λ p→ map (λ pf→ ((([c ], xs), cong (λ x→ x :: xs) (sym p), refl, pf)))

(match-helper k xs)
match (r1 ·s r2) s k =

map (reassociate-left {R = _·s_} (λ inL inL’→ , refl, inL, inL’))
(match r1 s (r2 :: k))

match (r1 ⊕s r2) s k =
(map (change-∈L inj1) (match r1 s k)) ||
(map (change-∈L inj2) (match r2 s k))

match (r +s) s k =
(map (change-∈L S+) (match r s k)) ||
(map (reassociate-left {R = λ r → r +s} (λ inL inL’→ C+ refl inL inL’))

(match r s ((r +s) :: k)))

match-helper : (k : List StdRegExp)→ (s : List Char)→ Maybe (s ∈Lk k)
match-helper [ ] [ ] = return refl
match-helper [ ] (x :: s) = fail
match-helper (r :: k’) s = match r s k’

Figure 1: Defunctionalized intrinsic matcher
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3.1.5 Acceptance

From the outside, we can call the generalized matcher with the empty stack
to check membership:

acceptss-intrinsic : (r : StdRegExp)→ (s : List Char)→ Maybe (s ∈Ls r)
acceptss-intrinsic r s = map ∈L-empty-stack (match r s [ ])

When the match function succeeds on an empty stack, the suffix is in the
language of an empty stack and is therefore an empty string, so we use the
following lemma to change the result of the function call match r s [ ] into a
derivation over the entire string s.

∈L-empty-stack : {r : StdRegExp} {s : List Char}
→ Σ (λ {(p, s’)→ (p ++ s’ ≡ s) × (p ∈Ls r) × (s’ ≡ [ ])})
→ s ∈Ls r

3.2 Completeness

Though the above matcher is intrinsically sound, it is not intrinsically complete—
for example, the function that always fails has the above type. One way to
resolve this would be to write a matcher that is intrinsically both sound
and complete — ignoring the stack, given s and r, we would like to know
(s ∈Ls r) ] ¬ (s ∈Ls r), a type that expresses decidability of matching.
However, while there is an efficiency reason to intrinsically compute the the
derivation of s ∈Ls r—we will use it to extract matching strings in Sec-
tion 5.1—there is no computational content to ¬ (s ∈Ls r). Because of this,
and because it keeps the matcher code itself simpler, we choose to make
completeness extrinsic. In full, completeness says that if we have r, s, k and
a split of p ++ s’ ≡ s such that there are derivations of type p ∈Ls r and
s’ ∈Lk k, then we know that our match function does not fail:

match-completeness : (r : StdRegExp) (s : List Char) (k : List StdRegExp)

→ Σ (λ {(p, s’)→ (p ++ s’ ≡ s) × (p ∈Ls r) × (s’ ∈Lk k)})
→ isJust (match r s k)

That is, when there is a way for the matcher to succeed, it does. We cannot
make a stronger claim and say that it returns the same derivation that is
given as input, because as we showed before, there can be different deriva-
tions for the same s and r, and the given one may not be the one the matcher
finds.
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The full proof is in the companion code. The base cases ∅s and Lits are
easy. Since the Kleene plus case captures the essence of both concatenation
and alternation cases, we will explain only this case. The proof proceeds by
cases, depending on how the given derivation of p ∈L (r +) was constructed.
For the first,

match-completeness (r +s) s k ((xs, ys), eq, S+ inL, rest)
with match r s k | match-completeness r s k ((xs, ys), eq, inL, rest)

... | nothing | ()

... | just | = tt

if the given derivation of xs ∈L (r +) was by the constructor S+, then sitting
under the constructor is a derivation of inL : xs ∈Ls r, and the result follows
from the inductive hypothesis on D.

For the second, where the derivation was constructed by C+,

match-completeness (r +s) ◦ ((s1 ++ s2) ++ ys) k
((._, ys), refl,C+ { ._} {s1} {s2} refl inL1 inL2, rest)
with match r ((s1 ++ s2) ++ ys) k

... | just = tt

... | nothing
with match r ((s1 ++ s2) ++ ys) ((r +s) :: k)
| match-completeness r ((s1 ++ s2) ++ ys) ((r +s) :: k)

( , append-assoc s1 s2 ys, inL1, ( , ys), refl, inL2, rest)
... | nothing | ()
... | just | = tt

we already had a split xs ++ ys ≡ s, so we can replace s with xs ++ ys
by pattern matching on the equality proof. The constructor C+ gives us
another split s1 ++ s2 ≡ xs, so we can also replace xs with s1 ++ s2. This
means now we have to show the goal for (s1 ++ s2) ++ ys instead of s.
The definition of the Kleene plus case uses _||_, which has to try and fail
the first case to return the second case. To verify completeness, we first
check whether match r ((s1 ++ s2) ++ ys) k succeeds or fails. If the call
succeeds, then we satisfy the first case of _||_, so the matcher succeeds. If
the call fails, then we checker whether the second disjunct fails or succeeds.
If it fails, then we obtain a contradiction by the inductive hypothesis, which
shows that the recursive call should have succeeded because s1 matches r
and s2 ++ ys matches the continuation (using the associative property of
appending lists to show that it is the same string). If it succeeds, then the
matcher succeeds, so we have the result.
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As a corollary, we get completeness of acceptss-intrinsic:

acceptss-intrinsic-completeness : (r : StdRegExp) (s : List Char)
→ s ∈Ls r
→ isJust (acceptss-intrinsic r s)

4 Higher-order intrinsic matcher

In this section, we show that the above intrinsic verification of the first-order
matcher scales to a higher-order matcher, written using continuation-passing,
which is more similar to Harper’s original code. We will use this to explain
why the above matcher is a defunctionalization, and why the termination
reasoning is more difficult in the higher-order case. To make termination
evident to Agda, we will need to use an explicit termination metric that
corresponds to well-founded induction on strings/lists. This is represented
in Agda by an iterated inductive definition RecursionPermission xs. Visually,
you can think of RecursionPermission ys as a tree, where a node for ys has
subtrees for each strict suffix of ys. Each of these subtrees is judged smaller
by the termination checker, and therefore we will be allowed to recur on any
suffix of ys. Such a tree type is defined by the following datatype, which has
a higher-order constructor argument:

data RecursionPermission {A : Set} : List A→ Set where
CanRec : {ys : List A}
→ ((xs : List A)→ Suffix xs ys→ RecursionPermission xs)
→ RecursionPermission ys

4.1 Definition

The higher-order intrinsic matcher has the following specification:

match : (C : Set) (r : StdRegExp) (s : List Char)
→ (k : ∀ {p s’} → p ++ s’ ≡ s→ p ∈Ls r→ Maybe C)
→ RecursionPermission s
→ Maybe C

The type variable C stands for the output derivation computed by the
matcher on success. Just as Harper’s algorithm returns a bool and uses both
the continuation and the language’s control stack (i.e. it is not fully in CPS),
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here both the continuation and the matcher return an option, but the success
data can been chosen arbitrarily. In Harper’s algorithm, the continuation
takes a string that corresponds to s’ in the above type. The additional
arguments provided here, which are important for justifying termination,
say that in a call to match r s k, the domain of the continuation is suffixes
s’ of s by a prefix that is in the language of r. The final argument is of
type RecursionPermission s, and allows recursive calls on strict suffixes of s.
The termination measure for this function is lexicographic in first the regular
expression r and then the recursion permission tree. The complete code is
in Figure 2.

4.1.1 Base cases

The case for the empty regexp fails:

match C ∅s s k perm = fail

The cases for character literals

match C (Lits c) [ ] k perm = fail
match C (Lits c) (x :: xs) k perm =

(isEqual x c) >>= (λ p→ k { [x]} {xs} refl (cong (λ q→ [q]) p))

are as above, except that where we called match-helper to activate the stack
k, here we call k itself. The packaging of the result of match-helper (the map
in the above code) now happens as input to k, because to call k we must
show that x :: xs splits as something in the language of Lits c and some suffix.

4.1.2 Concatenation

match C (r1 ·s r2) s k (CanRec f) =
match C r1 s

(λ {p} {s’} eq inL→
match C r2 s’ (λ {p’} {s” } eq’ inL’→

k {p ++ p’} {s” } (replace-right p s’ p’ s” s eq’ eq) ((p, p’), refl, inL, inL’))
(f s’ (suffix-after-∈Ls eq inL))) (CanRec f)

In the concatenation case of the defunctionalized version, we added r2 to
the stack of continuations to be matched later. In the higher-order version,
extending the stack with r2 corresponds to constructing a new continuation
function which matches r2 against the suffix that results from matching r1
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against a prefix—which is exactly what “applying” the stack in match-helper
did in the defunctionalized version. The massaging that happens after the
recursive call above (the reassociate-left) here happens in the new continua-
tion, which repackages the given derivations inL : p ∈Ls r1 and inL’ : p’ ∈Ls r2
and the given splittings eq : p ++ s’ ≡ s and eq’ : p’ ++ s” ≡ s’ as a splitting
(p ++ p’) ++ s” ≡ s and a derivation that p ++ p’ ∈ ∈Ls (r1 ·s r2). The
two recursive calls pass the termination checker because the regular expres-
sions r1 and r2 get smaller in each case. To make the inner recursive call, it
is necessary to supply a recursion permission for s’, i.e. to allow recursive
calls on s’, and to do this it suffices to show that s’ is a suffix of s. The
suffix-after-∈Ls lemma

suffix-after-∈Ls : ∀ {p s’ s r} → (p ++ s’ ≡ s)→ (p ∈Ls r)→ Suffix s’ s

does this: s’ is a non-strict suffix of s by the equality, and because the prefix
p is in the language of a standard regular expression r and therefore is not
empty, it is a strict suffix. (In this case, it would also be sufficient to observe
that s’ is a non-strict suffix of s, because we do not need the string and
recursion permission to get smaller to justify termination, but the argument
we just gave will also be used in the Kleene plus case.)

4.1.3 Alternation

match C (r1 ⊕s r2) s k perm =
match C r1 s (λ eq inL→ k eq (inj1 inL)) perm ||
match C r2 s (λ eq inL→ k eq (inj2 inL)) perm

The alternation case is similar to the defunctionalized version, except
instead of massaging the derivations after the fact with map change-∈L, we
modify them before passing them to the continuation.

4.1.4 Kleene plus

match C (r +s) s k (CanRec f) =
match C r s (λ eq inL→ k eq (S+ inL)) (CanRec f) ||
match C r s (λ {p} {s’} eq inL→

match C (r +s) s’ (λ {p’} {s” } eq’ inL’→
k (replace-right p s’ p’ s” s eq’ eq) (C+ refl inL inL’))
(f s’ (suffix-after-∈Ls eq inL))) (CanRec f)
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The structure of the Kleene plus case is similar to the defunctionalized
version, except the continuations are modified analogously to the concate-
nation and alternation cases. The first recursive call terminates because r
gets smaller. For the second recursive call, (r +s) stays the same, so it is
essential that s’ is a strict suffix of s, and that the recursion permission tree
gets smaller. As in the alternation case, s’ is a non-strict suffix of s by the
equality eq : p ++ s’ ≡ s, and because the prefix p is in the language of a
standard regular expression r and therefore is not empty, s’ is a strict suffix
of s by the suffix-after-∈Ls lemma. Therefore, applying f to s’ and this fact
selects a smaller recursion permission subtree, justifying termination.

Termination is trickier for the higher-order matcher than for the defunc-
tionalized matcher because, here, we make the recursive call on r +s in the
continuation constructed in the r +s case, so we must argue that whenever
this continuation is applied, it will be applied to a smaller string. In the
defunctionalized matcher, this recursive call is made in match-helper (the
apply function for the defunctionalized continuation), which is called from
the character literal case, at which point it is syntactically clear that the
recursive call is being made on a smaller string.

4.1.5 Acceptance

Overall, we can define

acceptss-intrinsic : (r : StdRegExp)→ (s : List Char)→ Maybe (s ∈Ls r)
acceptss-intrinsic r s = match r s empty-continuation (well-founded s)

by choosing an appropriate initial continuation, and by constructing a re-
cursion permission for s (which exists because string suffix is a well-founded
relation). The initial continuation

empty-continuation : ∀ {p s’ s r} → (p ++ s’ ≡ s)→ (p ∈Ls r)→ Maybe (s ∈Ls r)

corresponds to the logic for the empty stack [ ] in match-helper in the defunc-
tionalized version. This function takes a splitting of a string s as p ++ s’, as
well as a proof that its first part p is in the language of r. It returns either
nothing if s’ is not empty, or just a witness that (s ∈Ls r) if s’ is empty, and
therefore s ≡ p’.

4.2 Completeness

Completeness is similar to above, and says that the matcher succeeds when-
ever it should:
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match : (C : Set) (r : StdRegExp) (s : List Char)
(k : ∀ {p s’} → p ++ s’ ≡ s→ p ∈Ls r→ Maybe C)
→ RecursionPermission s
→ Maybe C

match C ∅s s k perm = fail
match C (Lits c) [ ] k perm = fail
match C (Lits c) (x :: xs) k perm =

(isEqual x c) >>= (λ p→ k { [x]} {xs} refl (cong (λ q→ [q]) p))
match C (r1 ·s r2) s k (CanRec f) =

match C r1 s
(λ {p} {s’} eq inL→

match C r2 s’ (λ {p’} {s” } eq’ inL’→
k {p ++ p’} {s” } (replace-right p s’ p’ s” s eq’ eq) ((p, p’), refl, inL, inL’))
(f (suffix-after-∈Ls eq inL))) (CanRec f)

match C (r1 ⊕s r2) s k perm =
match C r1 s (λ eq inL→ k eq (inj1 inL)) perm ||
match C r2 s (λ eq inL→ k eq (inj2 inL)) perm

match C (r +s) s k (CanRec f) =
match C r s (λ eq inL→ k eq (S+ inL)) (CanRec f) ||
match C r s (λ {p} {s’} eq inL→

match C (r +s) s’ (λ {p’} {s” } eq’ inL’→
k (replace-right p s’ p’ s” s eq’ eq) (C+ refl inL inL’))
(f (suffix-after-∈Ls eq inL))) (CanRec f)

Figure 2: Complete definition of the match function for the higher-order
intrinsic matcher.
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match-completeness : (C : Set) (r : StdRegExp) (s : List Char)
→ (k : ∀ {p s’} → p ++ s’ ≡ s→ p ∈Ls r→ Maybe C)
→ (perm : RecursionPermission s)
→ Σ (λ {(p, s’)→ Σ (λ eq→ Σ (λ inL→ isJust (k {p} {s’} eq inL)))})
→ isJust (match C r s k perm)

The type can be read as follows: Suppose we have C, r, s, k and perm.
Suppose there exists a split of p ++ s’ ≡ s such that there exists a derivation
of type p ∈Ls r such that the continuation called with those arguments does
not return nothing. Then we have to show that the match function does not
fail. Like above, we cannot make a stronger claim and say that the calls to
the continuation and thematch function return the same derivations, because
there can be more than one derivation of a string matching a regexp. The
proof is in the companion code, and follows the same pattern as the proof of
match-completeness for the defunctionalized version.

5 Matching non-standard regular expressions

Both of the above matchers work on syntactically standard regular expres-
sions, which is used to show termination. We now show that this suffices to
define a matcher for non-standard regular expressions, which we represent
by a type RegExp:

data RegExp : Set where
∅ : RegExp
ε : RegExp
Lit : Char→ RegExp
_·_ : RegExp→ RegExp→ RegExp
_⊕_ : RegExp→ RegExp→ RegExp
_* : RegExp→ RegExp
G : RegExp→ RegExp

∅ matches the empty language, ε matches the empty string, Lit is character
literals, _·_ is concatenation, _⊕_ is alternation, _*_ is Kleene star, and
G is for reporting matching strings.

mutual
_∈L_ : List Char→ RegExp→ Set
∈L ∅ = ⊥

s ∈L ε = s ≡ [ ]
s ∈L (Lit c) = s ≡ c :: [ ]
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s ∈L (r1 ⊕ r2) = (s ∈L r1) ] (s ∈L r2)
s ∈L (r1 · r2) =
Σ (List Char × List Char) (λ {(p, q)→ (p ++ q ≡ s) × (p ∈L r1) × (q ∈L r2)})

s ∈L (r *) = s ∈Lx r
s ∈L (G r) = s ∈L r

data _∈Lx_ : List Char→ RegExp→ Set where
Ex : ∀ {s r} → s ≡ [ ]→ s ∈Lx r
Cx : ∀ {s s1 s2 r} → s1 ++ s2 ≡ s→ s1 ∈L r→ s2 ∈Lx r→ s ∈Lx r

The definition of the language of these regular expressions is similar to above,
but with an ε case that requires an empty string, and a base case for s ∈Lx r
that allows the empty string; note that G does not change the language.

Next, we define a translation from regexps to syntactically standard reg-
exps. The translation uses a helper function that checks if a regular ex-
pression accepts the empty string. Instead of giving this function the type
RegExp → Bool, we give it a more informative type stating that it decides
whether the empty string is in the language of its input:

δ’ : (r : RegExp)→ ([ ] ∈L r) ] (¬ ([ ] ∈L r))

Using δ’, we can easily define δ : RegExp → Bool by forgetting the extra
information.

The specification for standardization, which we prove below, is that

(∀s)
[
s ∈ L(r)⇐⇒ [(δ(r) = true ∧ s = []) ∨ s ∈ L(standardize(r))]

]
That is, s is in the language of r if and only if either and r accepts the empty
string and the string is empty , or s is in the language of the standardized
version of r.

We standardize as follows:

standardize : RegExp→ StdRegExp
standardize ∅ = ∅s

standardize ε = ∅s

standardize (Lit x) = Lits x
standardize (r1 · r2) with standardize r1 | standardize r2 | δ r1 | δ r2
... | r1’ | r2’ | false | false = r1’ ·s r2’
... | r1’ | r2’ | false | true = r1’ ⊕s (r1’ ·s r2’)
... | r1’ | r2’ | true | false = r2’ ⊕s (r1’ ·s r2’)
... | r1’ | r2’ | true | true = r1’ ⊕s r2’ ⊕s (r1’ ·s r2’)
standardize (r1 ⊕ r2) = standardize r1 ⊕s standardize r2
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standardize (r *) = (standardize r) +s

standardize (G r) = standardize r

The empty string language ε becomes the empty set ∅s and Kleene star
becomes Kleene plus, because the emptiness checking is performed outside
matching the standardized regexp. For the concatenation case, we write r1’
and r2’ for the standardizations of r1 and r2. Because standardize r will not
accept the empty string even when r does, it is necessary to check r1’ and
r2’ by themselves in the case where the other one accepts the empty string,
because otherwise we would miss strings that rely on one component but not
the other being empty.

Our definition of the concatenation case is a bit different than Harper’s,
where δ returns not a boolean, but a regexp ∅ (if r does not accept the empty
string) or ε (if it does), and the clause is as follows:

standardize (r1 · r2) = ((δ r1) ·s (standardize r2)) ⊕s

((standardize r1) ·s (δ r2)) ⊕s

((standardize r1) ·s (standardize r2))

This definition is equivalent to above, using the equivalences that for any r,
∅ ·s r = ∅ = r ·s ∅ and ε ·s r = r = r ·s ε. For example, when δ r1 is true,
Harper’s translation gives a ε ·s (standardize r2) summand, which is standard
but not syntactically standard, but we can simplify it to standardize r2. When
δ r1 is false, Harper’s translation gives an ∅ ·s (standardize r2) summand,
which drops out.

This definition of standardization satisfies the above correctness theorem;
we have proved

∈L-soundness : (s : List Char) (r : RegExp)
→ ((δ r ≡ true) × (s ≡ [ ])) ] (s ∈Ls (standardize r))
→ s ∈L r

∈L-completeness : (s : List Char) (r : RegExp)
→ s ∈L r
→ ((δ r ≡ true) × (s ≡ [ ])) ] (s ∈Ls (standardize r))

Now that we have a verified standardize function, we can define _accepts_
as follows, where acceptss-intrinsic can be either of the above matchers:

accepts-intrinsic : (r : RegExp)→ (s : List Char)→ Maybe (s ∈L r)
accepts-intrinsic r s with δ’ r
accepts-intrinsic r [ ] | inj1 x = just x
accepts-intrinsic r s | = map (∈L-soundness s r ◦ inj2) (acceptss-intrinsic (standardize r) s)
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If r accepts the empty string, we return true if xs is empty or the stan-
dardization of r accepts xs. If r does not accept the empty string, then we
only have the latter option. In that case, we call acceptss-intrinsic to get
an optional derivation of the type s ∈Ls (standardize r) and use that on
∈L-soundness to get an optional derivation of the type s ∈L r.

As usual, we have proved completeness extrinsically:

correct-completeness : (r : RegExp) (s : List Char)
→ s ∈L r
→ isJust (r accepts s)

Finally, we have proved decidability of matching as a corollary of sound-
ness and completeness:

decidability : (r : RegExp) (s : List Char)→ (s ∈L r) ] (¬ (s ∈L r))

5.1 Capturing groups

The “capturing group” constructor G is intended to allow the user to specify
parts of a regular expression whose matching strings should be extracted
and reported. For example, if our regular expression checks if a string is a
valid e-mail address, we might use this to parse the username and domains.
If we have a regular expression alphanumeric : RegExp that accepts a single
alphanumeric character (this can be defined in the above language as a big
⊕ of character literals), we can define a (naïve) regular expression for e-mail
addresses such as

e-mail : RegExp
e-mail = G (alphanumeric *) · Lit ’@’ · G (alphanumeric *) · Lit ’.’ · G (alphanumeric *)

Now, if we match the string “jdoe@wesleyan.edu" with e-mail, we should
extract and report “jdoe", “wesleyan" and “edu", because each of those sub-
strings matched a sub-regexp that was marked with G.

This extraction can be computed from the derivation of s ∈L r, which
provides a parse tree that says which substring of xs is matched by which part
of r. Thus, to report the groups, we do an in-order traversal of the regexp
and derivation tree, and collect the strings matching a capturing group to a
list. The function to do this can be defined as follows:

extract : {r : RegExp} → {xs : List Char} → xs ∈L r→ List (List Char)
extract {∅} ()
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extract {ε} refl = [ ]
extract {Lit x} refl = [ ]
extract {r1 · r2} ((as, bs), eq, a, b) = extract {r1} {as} a ++ extract {r2} {bs} b
extract {r1 ⊕ r2} (inj1 x) = extract {r1} x
extract {r1 ⊕ r2} (inj2 y) = extract {r2} y
extract {r *} (Ex refl) = [ ]
extract {r *} (Cx {s} {s1} {s2} x x1 inL) = extract {r} x1 ++ extract {r *} inL
extract {G r} {xs} inL = xs :: extract {r} inL

Base cases ∅, ε, Lit will return an empty list because if they are captured
by a group, the substring is already added to the list in the previous calls to
extract. In concatenation, we make two recursive calls and append the results
because r1 and r2 match different substrings and they may have different
capturing groups inside them. In alternation, the entire string matches either
r1 or r2, so we make one recursive call to the one it matches. The Kleene
star case follows the same principles.

Combining this with our intrinsic matcher, we can define an overall func-
tion

groups : (r : RegExp) (s : List Char)→ Maybe (List (List Char))
groups r s = map extract (accepts-intrinsic r s)

6 Conclusion

We have studied three variations on Harper’s algorithm for regular expression
matching, which were inspired by programming and verifying this algorithm
using dependent types: defunctionalizing the matcher allows Agda to see
termination without an explicit metric, and provides an alternative to Yi’s
first-order matcher based on state machines; intrinsically verifying soundness
allows extracting matching strings; and a syntactic definition of standard
regular expressions simplifies the staging of the development. We believe
that these variations provide a nice illustration of the benefits of thinking in
a dependently typed language, and that they have some pedagogical value
for teaching this material in courses on dependently typed programming—or,
by porting the observations back to simply-typed languages, on introductory
programming.
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