~ talk

Commanding Emacs from Cog

(W title: Emacs Lisp considered harmful)

Joomy Korkut
Princeton University

Scheme Workshop, August 18th 2019



Coq

* Interactive theorem prover
with similar syntax to OCaml.

* Has iIng Emacs support,
thanks to Proof General.



‘ Emacs
Definition b := andb true false.
Check b.

Eval compute in b.



00 Emacs
Definition b := andb true false. Dstepping
through
Check b.

Eval compute in b.

b is defined



Eval compute in b.




00 Emacs

Definition/b := andb true false.

Checkb.

compute in b.

= false
vernacular . bool

commands



In the background...

request as vernacular command

Emacs >

—

response as output

Proof General



Here's what
| want to do



Definition to_upper
: ascii — ascii

Definition make_upper
: edit unit :=
do ¢ < get_char ;;

replace_char (to_upper c).

Emacs



‘ Emacs

Definition to_upper
: ascil — ascill :=

Definition make_upper
: edit unit :=
do ¢ < get_char ;;
replace_char (to_upper c).

joomy "\
entering new text into buffer
(cursor in the beginning)

10



‘ Emacs

Definition to_upper
: ascil — ascill :=

Definition make_upper
: edit unit :=
do ¢ < get_char ;;
replace_char (to_upper c).

joomy

M-: (run "make_upper") RET —_—

We run some Emacs commmand
11



‘ . Emacs

Definition to_upper
: ascil — ascill :=

Definition make_upper
: edit unit :=
do ¢ < get_char ;;
replace_char (to_upper c).

Joomy ~

The character
under the cursor
Is changed into uppercase!

12



What did we do here?

 We defined an editor macro in Coq.

 This macro depends on the computation of nontrivial Coq
functions.

e We ran this editor macro in Emacs Lisp.

13



How did we do that?

We defined an embedded domain-specific language
(eDSL) in Coq, that helps users define editor macros.

We wrote an interpreter for this Cog eDSL in Emacs Lisp.
This interpreter executes the atomic actions in Emacs.

Whenever the interpreter sees an uncomputed
expression, it sends the expression back to Coq
for call-by-need evaluation!

14



Emacs

Definition to_upper
: ascii — ascil :=

Definition make_upper
: edit unit :=
do ¢ < get_char ;;
replace_char (to_upper c).

Joomy

Let's illustrate that. Remember the macro we ran?

15



Tracing our steps

Eval cbn in make_upper. R call-by-need
evaluation
get char "get_char »= (func = ...)" |
under cursor <
Eval cbn in ((fun ¢ = replace_char c) "j") call-by-need 9
. evaluation
remove char "remove_char >= (fun _ = ...)"
under cursor s
EmaCS Eval cbn in ((fun _ = insert_char (to_upper "j")) tt) call-by-need Coq
evaluation
insert __ "insert_char \"J\""
char

Emacs now realizes that
the macro execution is complete!

16



The definition of our eDSL

Inductive edit : Type —> Type :
ret : forall {a}, a = edit a
bind : forall {a b}, edit a = (a = edit b) — edit b
message : string —> edit unit

message_box : string —> edit unit

input : edit string

insert_char : ascii —> edit unit

remove_char : edit unit

get_char : edit ascii

move_left : edit unit Constructors except bind
move_right : edit unit. are called atomic.

17



The definition of our interpreter

(defun run-action (a)

(pcase a
(*(ret ,x) X)
(* (message ,s) (message s) "tt")
(* (message_box ,s) (message-box s) "tt")
(* (insert_char ,c) (insert c) "tt")
('get_char (prin1-to-string (string (following-char))))
('remove_char (delete-char 1) "tt")
('move_right (right-char) "tt")
('move_left (left-char) "tt")
('move_up (previous-1line) "tt")
('move_down (next-1line) "tt")
('move_beginning  (move-beginning-of-line) "tt")
('move_end (move-end) "tt")
(1 (message "Unrecognized action") nil)))

18



The definition of our interpreter

(defun parse-response (s)
(let* ((untail ...))
(pcase (read-from-string untail)
CGE.,m
(pcase ...)
(*(bind . ,n)
(pcase (read-from-string (substring untail (+ mn 1)))
(*(,act . ,p)
(run (concat (substring untail (+ mnp 1)) " " (run-action act))))))

(*(,act . ,m) (run-action act))
(1 (message "Error: Expecting either a bind or an action.")))))

(1 (message "Error: Expecting = in the beginning of the output.")))))

(defun run (s) from Proof General

(let* ((res (proof-shell-invisible-cmd-get-result
(concat "Eval cbn in (right_assoc (" s "))."))))
(parse-response res)))

19



One little caveat

e \We assume that the macro definition Emacs receives is
eitherm >= f, where m is an atomic action, or full the
macro definition an atomic action itself.

e Not all macros written with our eDSL would fit this format!

e However, we can restructure a macro definition to fit this
format! Since edit is a monad, this is just right
association of monadic bind!

20



Right association of bind

(get_char >= insert_char) >= (fun - = move_right)

¥

get_char >»>= (fun ¢ = (insert_char c) >= (fun - = move_right))

repeat this transformation
until the left hand side is atomic

We have a fuel based
Coq function to do that!

21



What's the end goal here?

e We can define IDE features for Coqg in Coq!
e Requires a more elaborate eDSL

e Requires better Coq support for type-directed development

22



