
Commanding Emacs from Coq

Joomy Korkut

Princeton University

Scheme Workshop, August 18th 2019

⚡ talk

(🌶 title: Emacs Lisp considered harmful)

�1

• Interactive theorem prover
with similar syntax to OCaml.

• Has amazing Emacs support,
thanks to Proof General.

Coq

 2

Emacs

Definition b *= andb true false.

Check b.

Eval compute in b.

 3

Emacs

b is defined

Definition b *= andb true false.

Check b.

Eval compute in b.

stepping
through

 4

Emacs

b
 : bool

Definition b *= andb true false.

Check b.

Eval compute in b.

 5

Emacs

 = false
 : bool

Definition b *= andb true false.

Check b.

Eval compute in b.

vernacular
commands

 6

In the background...

Coq
request as vernacular command

response as output

Emacs

Proof General

!7

Here's what  
I want to do

�8

Emacs

Definition to_upper
 : ascii => ascii *=
 ...

Definition make_upper
 : edit unit *=
 do c <@ get_char ;;
 replace_char (to_upper c).

 9

Emacs

Definition to_upper
 : ascii => ascii *=
 ...

Definition make_upper
 : edit unit *=
 do c <@ get_char ;;
 replace_char (to_upper c).

joomy
entering new text into buffer

(cursor in the beginning)

 10

Emacs

Definition to_upper
 : ascii => ascii *=
 ...

Definition make_upper
 : edit unit *=
 do c <@ get_char ;;
 replace_char (to_upper c).

joomy

M-* (run "make_upper") RET

We run some Emacs command
 11

Emacs

Definition to_upper
 : ascii => ascii *=
 ...

Definition make_upper
 : edit unit *=
 do c <@ get_char ;;
 replace_char (to_upper c).

Joomy

The character
under the cursor

is changed into uppercase!

 12

What did we do here?

• We defined an editor macro in Coq.

• This macro depends on the computation of nontrivial Coq
functions.

• We ran this editor macro in Emacs Lisp.

!13

How did we do that?

• We defined an embedded domain-specific language
(eDSL) in Coq, that helps users define editor macros.

• We wrote an interpreter for this Coq eDSL in Emacs Lisp.

• This interpreter executes the atomic actions in Emacs.

• Whenever the interpreter sees an uncomputed
expression, it sends the expression back to Coq  
for call-by-need evaluation!

!14

Emacs

Definition to_upper
 : ascii => ascii *=
 ...

Definition make_upper
 : edit unit *=
 do c <@ get_char ;;
 replace_char (to_upper c).

Joomy

Let's illustrate that. Remember the macro we ran?

 15

Tracing our steps

CoqEmacs

Eval cbn in make_upper.

"get_char MN= (fun c O> ...)"

Eval cbn in ((fun c O> replace_char c) "j")

"remove_char MN= (fun _ O> ...)"

Eval cbn in ((fun _ O> insert_char (to_upper "j")) tt)

"insert_char \"J\""

Emacs now realizes that  
the macro execution is complete!

get char
under cursor

remove char 
under cursor

insert  
char

call-by-need 
evaluation

call-by-need 
evaluation

call-by-need 
evaluation

!16

The definition of our eDSL

Inductive edit : Type => Type *=
| ret : forall {a}, a => edit a
| bind : forall {a b}, edit a => (a => edit b) => edit b
| message : string => edit unit
| message_box : string => edit unit
| input : edit string
| insert_char : ascii => edit unit
| remove_char : edit unit
| get_char : edit ascii
| move_left : edit unit
| move_right : edit unit.

connection with 
free monads?
(find me after the talk  

if you know more!)

!17

Constructors except bind
are called atomic.

The definition of our interpreter
(defun run-action (a)
 (pcase a
 (`(ret ,x) x)
 (`(message ,s) (message s) "tt")
 (`(message_box ,s) (message-box s) "tt")
 (`(insert_char ,c) (insert c) "tt")
 ('get_char (prin1-to-string (string (following-char))))
 ('remove_char (delete-char 1) "tt")
 ('move_right (right-char) "tt")
 ('move_left (left-char) "tt")
 ('move_up (previous-line) "tt")
 ('move_down (next-line) "tt")
 ('move_beginning (move-beginning-of-line) "tt")
 ('move_end (move-end) "tt")
 (l (message "Unrecognized action") nil)))

!18

The definition of our interpreter
(defun parse-response (s)
 (let* ((untail ...))
 (pcase (read-from-string untail)
 (`(= . ,m)
 (pcase ...)
 (`(bind . ,n)
 (pcase (read-from-string (substring untail (+ m n 1)))
 (`(,act . ,p)
 (run (concat (substring untail (+ m n p 1)) " " (run-action act))))))
 (`(,act . ,m) (run-action act))
 (l (message "Error: Expecting either a bind or an action.")))))
 (l (message "Error: Expecting = in the beginning of the output.")))))

(defun run (s)
 (let* ((res (proof-shell-invisible-cmd-get-result
 (concat "Eval cbn in (right_assoc (" s "))."))))
 (parse-response res)))

!19

parsing with string operations
elided here

from Proof General

One little caveat

• We assume that the macro definition Emacs receives is
either m #$= f, where m is an atomic action, or full the
macro definition an atomic action itself.

• Not all macros written with our eDSL would fit this format!

• However, we can restructure a macro definition to fit this
format! Since edit is a monad, this is just right
association of monadic bind!

!20

Right association of bind

!21

(get_char MN= insert_char) MN= (fun _ O> move_right)

get_char MN= (fun c O> (insert_char c) MN= (fun _ O> move_right))

repeat this transformation
until the left hand side is atomic

We have a fuel based
Coq function to do that!

What's the end goal here?

• We can define IDE features for Coq in Coq!

• Requires a more elaborate eDSL

• Requires better Coq support for type-directed development

!22

