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I want to start with a summary of the 
problem we are trying to solve with the 
verified FFI, and what our solution is.

In the real world, almost all programs 
are written in multiple languages.
<click> and then linked together.

<click> Parts written in different 
languages can be verified separately, 
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<click> but how do we prove that when 
these parts are combined into one 
multilanguage program, that it still works 
correctly?
Many have studied this problem, and 
obviously there are many nuances here, 
but recently the common approach has 
looked something like this… 



Here we have code in two different 
languages, we want to link these two.
<click> We define a combination of 
the two languages, 
<click> and treat these programs as a 
program in the combined language.

Here, the combined language allows 
terms from one language to be 
embedded in the other language. This 
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is an idea from Matthews and Findler. We 
dared to think that we can avoid this 
formula because of a particular 
coincidence.



That coincidence goes like this: We 
have some Coq code and some C 
code that we want to link together.

<click> But we also have a verified 
compiler from Coq to C, so we can 
compile our Coq code to C code. This 
is the CertiCoq project that has been 
in the works for 10 years or so.
<click> Now that we have the C 

*
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version of our Coq program, we can link 
that with our C program and reason about 
the combined program, using the Verified 
Software Toolchain (VST), which includes 
a program logic for C, based on 
separation logic.

Here’s the crucial observation about the 
verified FFI project: Our language of 
reasoning and the source language of 
our compiler are the same; we use Coq 
for both. Our language of foreign 
functions and the target language of 
our compiler are the same; we use C 
for both. This setup helps us avoid the 
traditional approach to multi-language 
semantics, where you have to combine 
two languages.



<click> Though I must note that the end-
to-end compiler correctness proof of 
CertiCoq is under construction. We had 
an incomplete proof for closed programs 
but due to some recent changes that 
proof is now out of date. We discuss in 
our tech report with Kathrin Stark and 
Andrew Appel, how our work can help us 
state the theorem for open programs, and 
how that theorem can connect to VST.



In reality, a complete program in our 
system looks more like this, where you 
have a Coq program compiled to C, 
foreign functions in C, and also a 
runtime and a garbage collector.
<click> In fact, we have a verified 
garbage collector implementation, for 
a garbage collector that operates on 
the CertiCoq runtime.
<click> In the VeriFFI project, we 

Wang et al. 
"Certifying Graph-Manipulating C Programs 
via Localizations within Data Structures" 
OOPSLA 2019
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provide the necessary mechanisms for 
foreign functions to be verified with 
respect to the CertiCoq runtime and 
garbage collector.

Instead of enumerating my contributions, I 
want to take you through an example of 
what a user of our system experiences. I 
will point out my contributions as we go 
along, and we can delve deeper into the 
necessary details later.



Integers are the most common data 
type, so suppose we want to write a 
program that uses  integers. In Coq, 
we already have the inductive 
representation of integers, so yes we 
can use them, but they are quite 
wasteful with space, we have to do a 
lot of allocations to create such 
values, and a lot of pointer 
dereferences to traverse them. We 

6

Module Type UInt63.
Parameter uint63 : Type.
Parameter from_nat : nat -> uint63.
Parameter to_nat : uint63 -> nat.
Parameter add mul : uint63 -> uint63 -> uint63.

End UInt63.

user's Coq code

abstract type
operations

Module FM : UInt63.
Definition uint63 : Type := {n : nat | n  < (2^63)}.
Definition from_nat (n : nat) : uint63 := 
(Nat.modulo n (2^63); ...).

Definition to_nat (i : uint63) : nat := 
let '(n; _) := i in n.

Definition add (x y : uint63) : uint63 :=
let '(xn; x_pf) := x in
let '(yn; y_pf) := y in
((xn + yn) mod (2^63); ...).

(* ... *)
End FM.

Module C : UInt63.
Axiom uint63 : Type.
Axiom from_nat : nat -> uint63.
Axiom to_nat : uint63 -> nat.
Axiom add mul : uint63 -> uint63 -> uint63.

End C.

functional
model

Coq references
to the foreign functions

that will be realized
on the C side



really want to have faster integers, the 
single machine word integers we know 
and love. With our system, implementing 
and using primitive single machine word 
integers is possible.

Let’s start by defining an interface for 
unsigned 63-bit integers, as a module 
type in Coq, which is like a module 
signature in OCaml / Standard ML.
<click> We have an abstract type, and 
some operations on it.

Now we need to provide implementations 
of this module type.

<click> One possible implementation is a 
purely functional one. In order to stay as 
close as possible to machine integers, we 



can define integers as bounded natural 
numbers with modulo wrapping. This is 
going to have terrible performance, but 
that is okay!
<click> What we really want to use is the 
primitive one. Here we declare the 
operations on integers as axioms, in order 
to tell Coq that they don’t have a plain 
Coq implementation. These functions will 
be realized when we compile to C and link 
with the foreign functions written in C.

Looking at this slide, you can probably 
sense here that we want to prove that 
these two module implementations are 
equivalent, that they behave the same 
way! This is stuff we teach to undergrads 
in COS 326!



But first, let’s finish the operational 
side. Now all we need to do is to 
register these references with Coq, 
and actually provide the C 
implementation for these functions. I 
am not showing the implementation 
here, that's not scientifically novel, but 
it's in the thesis.

Once we do that, … <click> we are 
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user's Coq code

CertiCoq Register
[ C.from_nat => "uint63_from_nat"
, C.to_nat => "uint63_to_nat" with tinfo
, C.add => "uint63_add”
, C.mul => "uint63_mul"
] Include [ "prims.h" ].

value uint63_from_nat(value n) {

// …

}

value uint63_to_nat(struct thread_info *tinfo,

value t) {

// …

}

value uint63_add(value n, value m) {

// …

}

value uint63_mul(value n, value m) {

// …

}

user's C code

Definition dot_product
(xs ys : list C.uint63) : C.uint63 :=

List.fold_right C.add
(C.from_nat 0)
(zip_with C.mul xs ys).

CertiCoq Compile dot_product.
CertiCoq Generate Glue [ nat, list ].



free to write our own functions that use 
primitive integers. Like this dot product 
function on lists of primitive integers. We 
can then compile this function to C using 
CertiCoq, and call it from any C program.

Now, let’s talk about the correctness of 
these functions. What we want to do is to 
state as the specification of each of these 
functions, the functional model function, 
and the C implementation counterpart, do 
the same thing. VST is a great tool for 
such proofs!
<click> Let’s zoom in on the to_nat
function, which converts a primitive 
integer to a Coq natural number, and let's 
talk about its VST specification.



If we were to write by hand, here’s 
what that specification would look like. 
There’s a lot here, and you don’t have 
to follow the details. Very very roughly, 
what we are saying here is this:
<click> Given some runtime info, and 
an input to the functional model,
<click> if the C function takes a value 
that is represented by that functional 
model input,
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Definition uint63_to_nat_spec : ident * funspec :=
DECLARE _uint63_to_nat
WITH gv : gvars, g : graph, roots : roots_t, sh : share, x : {_: FM.uint63 & unit},

p : rep_type, ti : val, outlier : outlier_t, t_info : thread_info
PRE [ thread_info; int_or_ptr_type ]
PROP (writable_share sh; @graph_predicate FM.uint63 g outlier (projT1 x) p)
PARAMS (ti, rep_type_val g p)
GLOBALS (gv)
SEP (full_gc g t_info roots outlier ti sh gv; mem_mgr gv)

POST [ int_or_ptr_type ]
EX (p' : rep_type) (g' : graph) (roots': roots_t) (t_info': thread_info),
PROP (@graph_predicate nat g' outlier ( FM.to_nat (projT1 x) ) p’;

gc_graph_iso g roots g' roots’;
frame_shells_eq (ti_frames t_info) (ti_frames t_info’))

RETURN (rep_type_val g' p’)
SEP (full_gc g' t_info' roots' outlier ti sh gv; mem_mgr gv).

user's Coq proof

We claim that
the function body

satisfies this spec.

FM.uint63

FM.uint63

FM.to_nat (projT1 x)nat

...

Given some runtime info,
and an input in the 
functional model,

if the C function takes 
a value that is 

represented by 
the functional model input,

then the C function 
returns a value that is 

represented by the 
functional model output. 

Lemma body_uint63_to_nat : 
semax_body Vprog Gprog f_uint63_to_nat uint63_to_nat_spec.

Proof. ... Qed.



<click> then the C function returns a value 
that is represented by the functional 
model output.

There are a lot of details about how the 
memory heap is represented by a graph, 
and how garbage collection can change 
this heap graph but the new graph is 
isomorphic modulo changes in this 
function, etc. We don’t have time for this 
right now but our tech report explains 
these details more clearly.

This is just the specification.
<click> We then claim that the C function 
body follows this specification and write 
the proof by hand.
The cool part is, if we have a complete 
proof of this, that means our foreign 



function is 
1) type-safe
2) correct with respect to the functional 
model.
(Though we do not have a proof of type-
safety since it requires reasoning across 
meta-levels)

I know this slide is overwhelming. 
Thankfully only certain parts of it vary 
from function to function.
<click> and as long as we can account for 
those variations, we can actually generate 
this spec automatically.
And making that possible is one of my 
contributions in my thesis (joint work with 
Stark and Appel).



Here’s what generating this spec 
looks like.

<click> We have a function 
description, which includes everything 
we need to know about this function. 
Most importantly, it has
<click> a reified description of the 
function type. Thanks to this 
description, we can ensure that the 
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Definition to_nat_desc : fn_desc :=
{| fn_type_reified :=

ARG FM.uint63 opaque (fun _ =>
RES nat transparent)

; foreign_fn := C.to_nat
; model_fn := fun '(x; tt) => FM.to_nat x
; fn_arity := 1
; c_name := "int63_to_nat"
|}.

Lemma body_uint63_to_nat : 
semax_body Vprog Gprog f_uint63_to_nat (funspec_of_foreign @C.to_nat).

Proof. 
... 

Qed.

user's Coq proof
function

description

generate function 
specification



foreign function and the model function in 
this record actually abide by the same 
type.

Another important use of the reified 
description is the
<click> annotation of each component of 
the type with a type class instance. In a 
function description, we use these 
instances to hold information about how 
these types are represented in memory. 
Here you can see that we say the input to 
to_nat is opaque (i.e. a primitive type) and 
its output is transparent (a plain Coq 
type).

Once we finish the function description, 
we can then
<click> compute a VST specification from 



it and start writing our proof.



Not to sound like an infomercial, but 
there’s more! We can also generate 
the function description automatically 
using the generator we wrote with 
MetaCoq.

Well, how is that possible? Through a 
lot of metaprogramming efforts.
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MetaCoq Run (fn_desc_gen FM.to_nat C.to_nat "uint63_to_nat").

Lemma body_uint63_to_nat : 
semax_body Vprog Gprog f_uint63_to_nat (funspec_of_foreign @C.to_nat).

Proof. 
... 

Qed.

user's Coq proof
generate function 

description

generate function 
specification



Well, what do I even mean by 
metaprogramming? 
Metaprogramming is simply programs 
generating or inspecting other 
programs.
It comes in all shapes and colors: C 
macros are metaprogramming. `eval` 
in JavaScript is metaprogramming. 
Replacing text in your code before 
every compilation is 

What is metaprogramming?
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code generation

inspection



metaprogramming. Template Haskell is 
metaprogramming.

There are a few different axes we can 
categorize metaprogramming:
- compile-time vs run-time, based on 

when the generation or introspection 
happens. C macros or Template 
Haskell are compile-time, JavaScript’s 
`eval` is run-time.

- homogeneous vs heterogenous, based 
on which language is generating or 
inspecting which. If a language does it 
to itself, it’s homogeneous. Template 
Haskell, once again, homogeneous. 
JavaScript’s `eval`, homogeneous. C 
macros, I’d argue are heterogeneous, 
the macro directives appear inside C 
code but they have their own language 



with its own if statements and 
definitions and namespaces.

- text-based vs term-based, how 
bindings are handled, etc.

Okay, so which kind do we care about 
here? Well, in the VeriFFI project, we use 
MetaCoq and Ltac for metaprogramming.



MetaCoq is a project formalizing Coq 
in Coq, but it also comes with a 
“Template Haskell”-like system. This 
system lets you express 
metaprograms in what is called a 
“template monad”. At compile time, 
you can run these programs, and 
these programs can inspect existing 
terms and types, they can generate 
new types and terms. They can add 

MetaCoq
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type and term generation

Gallina Gallina

type 
and term

inspection

Gallina



new definitions, new type class instances 
etc.

Both the language of metaprograms, and 
the language our metaprograms 
manipulate are Gallina. Therefore, this is a 
homogeneous compile-time 
metaprogramming system.



The other tool we use for 
metaprogramming is Ltac. Ltac is 
Coq’s tactic system. It is not 
commonly thought as a 
metaprogramming system but all it 
does it letting the user inspect types, 
terms, and proof states. When a 
definition is finished, Ltac generates a 
proof term, so it does proof term 
generation as well.

Ltac
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proof term generation

Ltac Gallina

type, term,
and 

proof state
inspection

Gallina



Ltac has its own language for tactics, but 
it generates a different language, Gallina, 
so we can categorize it as a 
heterogeneous compile-time 
metaprogramming system.



So, why am I talking about this? Well, 
it’s because I had to make a choice 
about how we generate things.
I could choose to take foreign types 
and functions (the module 
implementations I showed you before), 
and generate a scary VST 
specification directly from that, using 
MetaCoq or Ltac. That’s still a doable 
thing (at least with MetaCoq), but that 

monolithic vs distilled generation
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code generation
with metaprogramming

foreign types and functions VST specifications

Problems
1. MetaCoq's representation of Coq terms is "low level" by design.

• Have to work with De Bruijn indices.
• Cannot have mutually recursive type class instances.
• Recursive calls have to refer to a specific fix expression.
• Type class inference has to resolve immediately.
• There is no easy inference based on a context.

2. Metaprograms are harder to reason about!



would require writing a colossal 
metaprogram. We can call that approach 
“monolithic generation".

There are two problems with this 
approach, supposing we use MetaCoq: 
<click>

1. MetaCoq's representation of Coq terms is 
"low level" by design. They kept the core 
language to a minimum, which made it easier 
to write proofs about, which is MetaCoq’s
primary goal, but this made it harder to 
generate code in the core language. It’s 
unavoidable to run into certain issues. The 
graph predicate generation part of our 
development is more monolithic, so I did run 
into these issues and had to come up with 
solutions to get around them:

• MetaCoq terms use De Bruijn indices for 



bound variables.
• MetaCoq doesn't allow mutually recursive 

type class instances so you can only define 
one at a time. 

• Recursive calls have to refer to a specific 
fix expression, which means you cannot 
absentmindedly do a recursive call on 
constructor arguments and let type class 
resolution handle where the call goes.

• Type class inference has to resolve 
immediately, not when all the definitions 
are finished or anything like that. You 
cannot hope that everything will be fine at 
the end and avoid rigor.

• There is no easy inference based on a 
context. You have to create a context 
yourself and then run the inference 
primitive in MetaCoq, essentially doing 
lambda lifting.

I describe these solutions in my thesis.



The other important reason to avoid 
monolithic generation is this:
2. Metaprograms are harder to reason about! 
It is harder for us to tell if our metaprogram 
generates the right thing, and that it always 
works. Reasoning about metaprograms 
requires reasoning from a meta-level above, 
which is like chopping veggies with oven mitts 
on.



Here’s what I suggest instead.
<click> We come up with an 
intermediate representation. In my 
case, this is the reified description 
type.
<click> We can generate these 
descriptions using metaprogramming.
<click> But for the rest, we do not 
need compile-time metaprogramming. 
We can write a Gallina function that 

monolithic vs distilled generation
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code generation
with metaprogramming

foreign types and functions VST specifications

computation

reified descriptions

graph predicates



takes this description and computes a 
VST specification.

This way we isolate the metaprogram to 
the first half of generation. We generate 
the VST spec, by first distilling into a 
multi-purpose description, and from there 
we can do a lot of things as we wish.

<click> In our verified FFI project, we use 
MetaCoq to generate the graph 
predicates and reified descriptions. These 
are separate generations. The lemmas 
about our graph predicates are generated 
via Ltac. These predicates and lemmas 
are then used in the reified descriptions.

<click> Since I believe this is one of the 
scientific contributions of my thesis, I 



want to focus a bit more on the reified 
descriptions.



Before that, we should have a quick 
refresher of what an inductive data 
type can look like in Coq. This is 
dependent types land, so there might 
be some people unfamiliar in the 
audience.
(For those who have seen the ICFP 
bingo, the vector type has appeared, 
you can mark it on your card!)

Inductive vec (A : Type) : nat -> Type :=
| vnil : vec A O
| vcons : forall n, A -> vec A n -> vec A (S n).
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an inductive data type in Coq

parameter index

argument result



A parameter is a part of the type that 
doesn't change among the subterms. The 
type A here is a parameter. If your vector 
is a vector of booleans, all the subvectors
are gonna be vectors of booleans.
An index is a part of the type that CAN 
change among the subterms. Nat here is 
an index, indicating the length of the 
vector. If your vector is of length 3, the 
immediate subterm will have length 2 and 
so on.
An argument is a part of a constructor 
that holds some value. The cons 
constructor has 3 arguments, for 
example.
A result is the what the constructor 
returns at the end.

Now that we agree on a terminology to 



talk about inductive types, let’s talk about 
how to describe constructor and function 
types.



If we use MetaCoq’s
representation for constructor 
types directly to generate things, 
we are going to have to deal with 
this monster.

<click> These are the parts that 
describe the nil and cons 
constructors for indexed vectors. 
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({| universes := (LevelSetProp.of_list [Level.level "Top.3"; Level.lzero], ConstraintSet.empty);
declarations :=
[(MPfile ["Top"], "vec",
InductiveDecl
{|
ind_finite := Finite; ind_npars := 1;
ind_params :=
[{| decl_name := {| binder_name := nNamed "A"; binder_relevance := Relevant |};

decl_body := None;
decl_type := tSort (sType (Universe.make' (Level.level "Top.3")))

|}];
ind_bodies :=
[{| ind_name := "vec";

ind_indices :=
[{| decl_name := {| binder_name := nAnon; binder_relevance := Relevant |};

decl_body := None;
decl_type := tInd {| inductive_mind := (MPfile ["Datatypes"; "Init"; "Coq"], "nat"); 

inductive_ind := 0 |} []
|}];

ind_sort := sType (Universe.from_kernel_repr (Level.lzero, 0) [(Level.level "Top.3", 0)]);
ind_type :=
tProd
{| binder_name := nNamed "A"; binder_relevance := Relevant |}
(tSort (sType (Universe.make' (Level.level "Top.3"))))
(tProd

{| binder_name := nAnon; binder_relevance := Relevant |}
(tInd

{| inductive_mind := (MPfile ["Datatypes"; "Init"; "Coq"], "nat"); 
inductive_ind := 0 |} [])

(tSort (sType (Universe.from_kernel_repr ( Level.lzero, 0) [( Level.level "Top.3", 0)]))));
ind_kelim := IntoAny;
ind_ctors :=
[{| cstr_name := "vnil";

cstr_args := [];
cstr_indices :=
[tConstruct

{| inductive_mind := (MPfile ["Datatypes"; "Init"; "Coq"], "nat");
inductive_ind := 0

|} 0 []];
cstr_type :=
tProd
{| binder_name := nNamed "A"; binder_relevance := Relevant |}
(tSort (sType (Universe.make' (Level.level "Top.3"))))
(tApp (tRel 1)

[tRel 0;
tConstruct
{| inductive_mind := (MPfile ["Datatypes"; "Init"; "Coq"], "nat"); 

inductive_ind := 0 |} 0 []]);
cstr_arity := 0

|};

MetaCoq description of vec
{| cstr_name := "vcons";

cstr_args :=
[{| decl_name := {| binder_name := nAnon; binder_relevance := Relevant |};

decl_body := None;
decl_type := tApp (tRel 3) [tRel 2; tRel 1]

|};
{| decl_name := {| binder_name := nAnon; binder_relevance := Relevant |};
decl_body := None;
decl_type := tRel 1

|};
{| decl_name := {| binder_name := nNamed "n"; binder_relevance := Relevant |};
decl_body := None;
decl_type := tInd {| inductive_mind := (MPfile ["Datatypes"; "Init"; "Coq"], "nat");

inductive_ind := 0 |} []
|}];

cstr_indices :=
[tApp

(tConstruct
{| inductive_mind := (MPfile ["Datatypes"; "Init"; "Coq"], "nat"); 

inductive_ind := 0 |} 1 []) [tRel 2]];
cstr_type :=
tProd
{| binder_name := nNamed "A"; binder_relevance := Relevant |}
(tSort (sType (Universe.make' (Level.level "Top.3"))))
(tProd

{| binder_name := nNamed "n"; binder_relevance := Relevant |}
(tInd

{| inductive_mind := (MPfile ["Datatypes"; "Init"; "Coq"], "nat"); 
inductive_ind := 0 |} [])

(tProd
{| binder_name := nAnon; binder_relevance := Relevant |} (tRel 1)
(tProd

{| binder_name := nAnon; binder_relevance := Relevant |} (tApp (tRel 3) [tRel 2; tRel 1])
(tApp (tRel 4)

[tRel 3;
tApp
(tConstruct

{| inductive_mind := (MPfile ["Datatypes"; "Init"; "Coq"], "nat"); 
inductive_ind := 0 |} 1 []) [

tRel 2]]))));
cstr_arity := 3

|}];
ind_projs := [];
ind_relevance := Relevant

|}];
ind_universes := Monomorphic_ctx;
ind_variance := None

|});
];

retroknowledge := ...
|},
tInd {| inductive_mind := (MPfile ["Top"], "vec"); inductive_ind := 0 |} [])



While this is a nice, extensive deeply 
embedded description, it is too far 
from real Coq values. We want a 
distilled version of this. And that is the 
reified description mechanism we 
developed.



As a metaprogramming term, 
reifying means representing a 
language construct into an explicit 
object in a language. Here are we 
trying to define an inductive type in 
Coq, that describes different parts 
of a Coq constructor type or a Coq 
function type.
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Inductive reified (ann : Type -> Type) : Type :=
| TYPEPARAM : (forall (A : Type) `(ann A), reified ann) -> reified ann
| ARG : forall (A : Type) `(ann A), (A -> reified ann) -> reified ann
| RES : forall (A : Type) `(ann A), reified ann.

VeriFFI’s generation library

(* vlength : forall (A : Type) (n : nat) (xs : vec A n), nat *)
Definition vlength_reified : reified InGraph :=
TYPEPARAM (fun (A : Type) (InGraph_A : InGraph A) =>
ARG nat InGraph_nat (fun (n : nat) =>
ARG (vec A n) (InGraph_vec A InGraph_A n) (fun (xs : vec A n) =>
RES nat InGraph_nat))).

(* vcons : forall (A : Type) (n : nat) (x : A) (xs : vec A n), vec A (S n) *)
Definition vcons_reified : reified InGraph :=
TYPEPARAM (fun (A : Type) (InGraph_A : InGraph A) =>
ARG nat InGraph_nat (fun (n : nat) =>
ARG A InGraph_A (fun (x : A) =>
ARG (vec A n) (InGraph_vec A InGraph_A n) (fun (xs : vec A n) =>
RES (vec A (S n)) (InGraph_vec A InGraph_A (S n)))))).

For other mixes of deep and shallow embeddings, see:
“Outrageous But Meaningful Coincidences: Dependent Type-Safe Syntax and Evaluation”. McBride. 2010. 
"Deeper Shallow Embeddings". Prinz, Kavvos, Lampropoulos. 2022.

higher-order abstract syntax-ish

annotations



Essentially, we have a different 
constructor for each component. Type 
parameters, arguments, and the return 
type.
<click> Notice that all except the 
return type take a function as an 
argument.
This might seem familiar to you from 
the work on higher-order abstract 
syntax, and it is indeed inspired from 
that.
The difference here is that we have a 
way of telling apart what part of a type 
we are looking at, and we can add 
extra information about the types we 
are dealing with. The annotation 
argument (written here as ann) carries 



the extra information.
Here we are mixing deep and shallow 
embeddings: We use the deep 
embedding part to distinguish the 
components of a type, but we are 
using the shallow part to annotate 
these components with a type class 
instance.

We already have seen an example 
reified description for the to_nat
function, but here’s another example:

<click> We want to describe the type 
of the cons constructor for indexed 
vectors. Notice that the type class 
instances are playing nicely with 



dependent types.
<click> We can also describe the type 
of a function on indexed vectors.

These descriptions can be 
automatically generated from the 
function types, using our generators 
based on MetaCoq.

There are other approaches that try to 
combine deep and shallow 
embeddings, namely by McBride, and 
also by Prinz et al. Their work is more 
general than ours, but our specific 
setup of languages allows us to avoid 
some of their more complicated 
mechanisms involving the universe 



pattern. We can simply
<click> annotate the components with 
type class instances thanks to this 
coincidence, since the language we 
are describing is a part of Coq, and we 
are annotating with Coq type classes.
Here’s the gist of the reified 
descriptions in one sentence: By 
making the describer and describee
the same language, and using 
higher-order abstract syntax, we 
can handle dependent types and 
annotate each component in a 
concise and type-safe way.

The annotation we have in this 
example here talks about how values 



of a Coq type are represented in the 
heap graph when the program is 
compiled to C, but we can annotate 
descriptions with anything we want.



Well, why did we go through all this 
trouble? What do reified descriptions 
buy us? The most important aspect is 
type safety. Here we see the 
description of the to_nat function, 
once again. We have a reified 
description inside, and thanks to 
that…
<click> when we provide the Coq 
references to the C implementation, 

What do reified descriptions buy us?
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Definition to_nat_desc : fn_desc :=
{| fn_type_reified :=

ARG FM.uint63 opaque (fun _ =>
RES nat transparent)

; foreign_fn := C.to_nat
; model_fn := fun '(x; tt) => FM.to_nat x
; fn_arity := 1
; c_name := "int63_to_nat"
|}.

user's Coq proof

1. type safety



and the functional model of this particular 
foreign function, we know they have the 
right type. How do we know that?...



Here’s how. We can recompute the 
type of the foreign function from that 
description. Here we see that 
converting back to the foreign function 
type gives us exactly the type of 
C.to_nat. It takes the C version of our 
abstract type, and gives back a Coq 
nat.

C.uint63 -> nat

Compute (to_foreign_fn_type to_nat_desc).

Compute (reflect to_nat_desc).
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This is exactly the type of C.to_nat



We can do the same thing for the 
functional model. Here we get the type 
of the uncurried version of the 
FM.to_nat function. This is just more 
convenient for VST specs, but we 
could have easily computed the 
curried type…

{x : FM.uint63 & unit} -> nat

Compute (to_foreign_fn_type to_nat_desc).

Compute (reflect to_nat_desc).
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This is the curried type of FM.to_nat



…like this. This function takes the 
functional model version of our 
abstract type, and returns a normal 
Coq nat, as it should.

FM.uint63 -> nat

Compute (to_foreign_fn_type to_nat_desc).

Compute (to_model_fn_type to_nat_desc).
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This is exactly the type of FM.to_nat



Here’s another thing this 
representation buys us:
We know dependent type checking 
involves evaluation! Our foreign 
functions, on the other hand, do not 
evaluate. So if we try to prove a 
lemma such as this, where we want to 
prove the associativity of addition, for 
the primitive addition operation, we 
have a problem: We cannot unfold the 

Lemma add_assoc : forall (x y z : nat),
C.to_nat (C.add (C.from_nat x) (C.add (C.from_nat y) (C.from_nat z))) =
C.to_nat (C.add (C.add (C.from_nat x) (C.from_nat y)) (C.from_nat z)).

Proof.
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proofs about our Coq program

2. rewrites of primitives to models



definitions of to_nat, from_nat, and add 
and continue our proof…



Since they are axioms on the Coq 
side, they get stuck! These foreign 
functions evaluate when we compile 
the program to C, because then they 
get realized by C functions, but that’s 
not good enough for proofs about the 
Coq references of foreign functions.

So, if we wanted to write a lemma like 
this, how can we do that if our foreign 

Lemma add_assoc : forall (x y z : nat),
C.to_nat (C.add (C.from_nat x) (C.add (C.from_nat y) (C.from_nat z))) =
C.to_nat (C.add (C.add (C.from_nat x) (C.from_nat y)) (C.from_nat z)).

Proof.
unfold C.to_nat.
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proofs about our Coq program

Error: C.to_nat is opaque.

2. rewrites of primitives to models



functions do not evaluate at compile 
time?



Our solution to this is a rewrite 
mechanism. We derive a way to 
rewrite calls to the foreign functions 
into calls to the functional model. If 
you have proofs for the VST 
specifications we generated earlier, 
using these rewrite principles 
becomes fair game.

Here we use our rewrite tactic. Notice 

Lemma add_assoc : forall (x y z : nat),
C.to_nat (C.add (C.from_nat x) (C.add (C.from_nat y) (C.from_nat z))) =
C.to_nat (C.add (C.add (C.from_nat x) (C.from_nat y)) (C.from_nat z)).

Proof.
intros x y z.
props from_nat_spec.
props to_nat_spec.
props add_spec.
prim_rewrites.
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proofs about our Coq program

1 goal

x, y, z : nat
============================
FM.to_nat (FM.add (FM.from_nat x) (FM.add (FM.from_nat y) (FM.from_nat z))) =
FM.to_nat (FM.add (FM.add (FM.from_nat x) (FM.from_nat y)) (FM.from_nat z))

2. rewrites of primitives to models



how our goal is now entirely about the 
functional model, and from there it's 
straightforward to prove this goal.

Under the hood, these tactics depend on 
rewriting principles we generate from the 
reified descriptions, which look like this…



Here we say, assuming there’s an 
isomorphism between the C version 
and the functional model version of 
the abstract type then you can say,

if you have a primitive integer, 
converting it to a nat with the C.to_nat
function is the same as converting it to 
a nat with FM.to_nat from the 
functional model, where the input to 

forall (x : C.uint63), 
C.to_nat x 
= FM.to_nat (from x)
: Prop

Eval cbn in model_spec to_nat_spec.

Eval cbn in model_spec add_spec.
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the functional model one is isomorphic to 
the starting primitive integer.



The rewriting principle we'll have for 
addition says,
if you have two primitive integers, 
adding them via the C implementation, 
will give the same result as adding 
them in the functional model, where 
the inputs to the foreign and functional 
model versions are isomorphic.

Well, where does this isomorphism 

forall (x y : C.uint63), 
C.add x y
= to (FM.add (from x) (from y))
: Prop

Eval cbn in model_spec to_nat_spec.

Eval cbn in model_spec add_spec.
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come from?



Let's take a closer look at this function 
description. When we said that the 
input is opaque, we actually store an 
isomorphism in this description…
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Definition to_nat_desc : fn_desc :=
{| fn_type_reified :=

ARG FM.uint63
opaque (fun _ =>

RES nat transparent)
; foreign_fn := C.to_nat
; model_fn := fun '(x; tt) => FM.to_nat x
; fn_arity := 1
; c_name := "int63_to_nat"
|}.

generated function description

An isomorphism 
between the foreign type and the model type



That isomorphism looks like this. We 
assume on the proof level that we can 
convert back and forth between the 
foreign type and model type. Based 
on this assumption, we can write 
proofs about the Coq references to 
foreign functions, like the associativity 
of addition that we just saw.

This is an assumption that is only 
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Definition to_nat_desc : fn_desc :=
{| fn_type_reified :=

ARG FM.uint63 
(@opaque FM.uint63 C.uint63 _ Isomorphism_uint63) (fun _ =>

RES nat transparent)
; foreign_fn := C.to_nat
; model_fn := fun '(x; tt) => FM.to_nat x
; fn_arity := 1
; c_name := "int63_to_nat"
|}.

generated function description

Hypothesis Isomorphism_uint63 : Isomorphism C.uint63 FM.uint63.

An isomorphism 
between the foreign type and the model type



available at the proof level, but it is a safe 
assumption to make if we have VST 
proofs for all the foreign functions in the 
module. Those VST proofs amount to 
equivalence of the C and FM modules, 
therefore we can say that the types are 
isomorphic. Once again, this is stuff from 
COS 326!

We do not, however, have a Coq proof of 
this isomorphism yet. It’s not clear to me 
how such a proof would go. I suspect it 
might require a proof about MetaCoq’s
reification and reflection system, or Coq 
modules and their power of abstraction, 
among other things. I think this should be 
future work.



Now that we all have a better sense of 
the VeriFFI project, I want to compare 
VeriFFI with existing work on verified 
compilers and verified FFIs.

<click> Oeuf is a verified compiler for 
a subset of Coq with no user-defined types, 
dependent types, fixpoints, or pattern matching. It 
doesn’t feature an FFI, but it allows verifying the 
wrapper C program to be verified via VST. Oeuf 

Œuf
(2018)

Cogent
(2016-2022)

CakeML
(2014-2019)

Melocoton
(2023)

VeriFFI
(2017-2024)

project verified 
compiler

certifying
compiler 

+ verifiable FFI

verified compiler 
+ FFI verifiable FFI verified compiler 

+ verifiable FFI

language 
pair

subset of 
Coq and C

Cogent 
and C ML and C toy subset of OCaml 

and toy subset of C
Coq and 

CompCert C

FFI aims for - safety correctness
+ safety

correctness 
+ safety

correctness 
+ safety

mechanism - -

not a program 
logic but an 
oracle about 

FFIs

Iris’s separation logic 
for multi-language 

semantics
VST’s

separation logic

garbage 
collection

optional
external GC

no
(unnecessary)

yes
(verified)

has a 
nondeterministic 

model

yes
(verified)

Comparison with other verified compilers / FFIs

30



allows plugging in a garbage collector if you want to, but 
it’s unverified.

<click> Cogent is a restricted functional language with a 
certifying (translation validation) compiler. The language 
has no general recursion or nested higher-order 
functions, but it features a uniqueness type system that 
makes garbage collection unnecessary. It allows users to 
check if their C foreign functions satisfy this type system 
and provides safety that way.

<click> CakeML is a verified compiler for ML. It allows C 
foreign functions and accounts for the correctness of the 
foreign functions in the compiler’s correctness theorem, 
but it doesn’t have a program logic in which the user can 
prove foreign functions correct. It has an oracle about 
the behavior of foreign functions that the correctness 
theorems depend on. And CakeML does have a verified 
garbage collector.

<click> Melocoton is a verified FFI project that allows 
programs written in a toy subset of OCaml and a toy 
subset of C to interact. Users can prove the correctness 



and safety of their programs using Iris’s separation logic. 
While Melocoton uses the multi-language semantics 
based on a combined language, it tries to isolate users 
from that and enable language-local reasoning for code 
in OCaml or C. It uses a model of a garbage collector to 
reason about multilanguage programs.

<click> In comparison, our work, VeriFFI, is built upon on 
verified compiler, CertiCoq. It allows reasoning about 
both correctness and safety of programs written in 
Gallina and CompCert C. One can use VST’s separation 
logic to reason about C foreign functions, and it features 
a real, verified garbage collector.



Before I finish my talk, I want to 
summarize what I think my scientific 
contributions are in this thesis.

<click> Reified descriptions can describe 
and annotate function types in a concise 
and type-safe way, thanks to higher-order 
abstract syntax and making the describer 
and describee the same language.

The important scientific contributions of my dissertation are 

• Reified descriptions can describe and annotate function types 
in a concise and type-safe way.

• Given a reified description, we can calculate separation logic 
specifications about foreign functions that talk about their 
correctness and safety.

• We can assume an isomorphism between the foreign type and 
the model type if there’s a module equivalence.
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See my dissertation for

• Details of glue code, reified descriptions, function descriptions, 
constructor descriptions, rewrite principles, and their generation

• Examples, such as primitive bytestrings, I/O and mutable arrays



<click> Given a reified description, we can 
calculate (instead of generate) separation logic 
specifications about foreign functions that talk 
about their correctness and safety.

<click> We can assume an isomorphism 
between the foreign type and the model type if 
there’s a module equivalence.

There’s a lot more that I didn’t have time for 
today
<click> You can read my dissertation to learn 
more about glue code, reified descriptions, 
function and constructor descriptions, rewrite 
principles, and generation of all these. I also 
feature more examples in the thesis, such as 
primitive bytestrings, programs with 
input/output, and mutable arrays.

We just got the news that our POPL 
submission about the VeriFFI project was 



conditionally accepted, so hopefully you can 
also see our paper there.



Thank you for listening. This was 
VeriFFI,<click> a Verified Foreign 
Function Interface between Coq and 
C. Coq program components are 
proved correct directly in Coq, C 
program components are locally 
proved correct using the Verified 
Software Toolchain (VST), and the 
connection is made via VST function 
specifications that are generated by 
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github.com/CertiCoq/VeriFFI



VeriFFI.

Thank you.


