
Hi everyone! Thank you for coming to
my FPO.
I’m Joomy, and today I'm gonna talk
about a verified foreign function
interface between Coq and C, and my
contributions to this project, especially
about how we used existing
metaprogramming techniques, and
devised new ones.

Foreign Function Verification
Through Metaprogramming

Joomy Korkut
Princeton University

Final Public Oral Examination
October 9th, 2024

1

I want to start with a summary of the
problem we are trying to solve with the
verified FFI, and what our solution is.

In the real world, almost all programs
are written in multiple languages.
<click> and then linked together.

<click> Parts written in different
languages can be verified separately,

2

?

<click> but how do we prove that when
these parts are combined into one
multilanguage program, that it still works
correctly?
Many have studied this problem, and
obviously there are many nuances here,
but recently the common approach has
looked something like this…

Here we have code in two different
languages, we want to link these two.
<click> We define a combination of
the two languages,
<click> and treat these programs as a
program in the combined language.

Here, the combined language allows
terms from one language to be
embedded in the other language. This

3

is an idea from Matthews and Findler. We
dared to think that we can avoid this
formula because of a particular
coincidence.

That coincidence goes like this: We
have some Coq code and some C
code that we want to link together.

<click> But we also have a verified
compiler from Coq to C, so we can
compile our Coq code to C code. This
is the CertiCoq project that has been
in the works for 10 years or so.
<click> Now that we have the C

*

4

version of our Coq program, we can link
that with our C program and reason about
the combined program, using the Verified
Software Toolchain (VST), which includes
a program logic for C, based on
separation logic.

Here’s the crucial observation about the
verified FFI project: Our language of
reasoning and the source language of
our compiler are the same; we use Coq
for both. Our language of foreign
functions and the target language of
our compiler are the same; we use C
for both. This setup helps us avoid the
traditional approach to multi-language
semantics, where you have to combine
two languages.

<click> Though I must note that the end-
to-end compiler correctness proof of
CertiCoq is under construction. We had
an incomplete proof for closed programs
but due to some recent changes that
proof is now out of date. We discuss in
our tech report with Kathrin Stark and
Andrew Appel, how our work can help us
state the theorem for open programs, and
how that theorem can connect to VST.

In reality, a complete program in our
system looks more like this, where you
have a Coq program compiled to C,
foreign functions in C, and also a
runtime and a garbage collector.
<click> In fact, we have a verified
garbage collector implementation, for
a garbage collector that operates on
the CertiCoq runtime.
<click> In the VeriFFI project, we

Wang et al.
"Certifying Graph-Manipulating C Programs
via Localizations within Data Structures"
OOPSLA 2019

5

provide the necessary mechanisms for
foreign functions to be verified with
respect to the CertiCoq runtime and
garbage collector.

Instead of enumerating my contributions, I
want to take you through an example of
what a user of our system experiences. I
will point out my contributions as we go
along, and we can delve deeper into the
necessary details later.

Integers are the most common data
type, so suppose we want to write a
program that uses integers. In Coq,
we already have the inductive
representation of integers, so yes we
can use them, but they are quite
wasteful with space, we have to do a
lot of allocations to create such
values, and a lot of pointer
dereferences to traverse them. We

6

Module Type UInt63.
Parameter uint63 : Type.
Parameter from_nat : nat -> uint63.
Parameter to_nat : uint63 -> nat.
Parameter add mul : uint63 -> uint63 -> uint63.

End UInt63.

user's Coq code

abstract type
operations

Module FM : UInt63.
Definition uint63 : Type := {n : nat | n < (2^63)}.
Definition from_nat (n : nat) : uint63 :=
(Nat.modulo n (2^63); ...).

Definition to_nat (i : uint63) : nat :=
let '(n; _) := i in n.

Definition add (x y : uint63) : uint63 :=
let '(xn; x_pf) := x in
let '(yn; y_pf) := y in
((xn + yn) mod (2^63); ...).

(* ... *)
End FM.

Module C : UInt63.
Axiom uint63 : Type.
Axiom from_nat : nat -> uint63.
Axiom to_nat : uint63 -> nat.
Axiom add mul : uint63 -> uint63 -> uint63.

End C.

functional
model

Coq references
to the foreign functions

that will be realized
on the C side

really want to have faster integers, the
single machine word integers we know
and love. With our system, implementing
and using primitive single machine word
integers is possible.

Let’s start by defining an interface for
unsigned 63-bit integers, as a module
type in Coq, which is like a module
signature in OCaml / Standard ML.
<click> We have an abstract type, and
some operations on it.

Now we need to provide implementations
of this module type.

<click> One possible implementation is a
purely functional one. In order to stay as
close as possible to machine integers, we

can define integers as bounded natural
numbers with modulo wrapping. This is
going to have terrible performance, but
that is okay!
<click> What we really want to use is the
primitive one. Here we declare the
operations on integers as axioms, in order
to tell Coq that they don’t have a plain
Coq implementation. These functions will
be realized when we compile to C and link
with the foreign functions written in C.

Looking at this slide, you can probably
sense here that we want to prove that
these two module implementations are
equivalent, that they behave the same
way! This is stuff we teach to undergrads
in COS 326!

But first, let’s finish the operational
side. Now all we need to do is to
register these references with Coq,
and actually provide the C
implementation for these functions. I
am not showing the implementation
here, that's not scientifically novel, but
it's in the thesis.

Once we do that, … <click> we are

7

user's Coq code

CertiCoq Register
[C.from_nat => "uint63_from_nat"
, C.to_nat => "uint63_to_nat" with tinfo
, C.add => "uint63_add”
, C.mul => "uint63_mul"
] Include ["prims.h"].

value uint63_from_nat(value n) {

// …

}

value uint63_to_nat(struct thread_info *tinfo,

value t) {

// …

}

value uint63_add(value n, value m) {

// …

}

value uint63_mul(value n, value m) {

// …

}

user's C code

Definition dot_product
(xs ys : list C.uint63) : C.uint63 :=

List.fold_right C.add
(C.from_nat 0)
(zip_with C.mul xs ys).

CertiCoq Compile dot_product.
CertiCoq Generate Glue [nat, list].

free to write our own functions that use
primitive integers. Like this dot product
function on lists of primitive integers. We
can then compile this function to C using
CertiCoq, and call it from any C program.

Now, let’s talk about the correctness of
these functions. What we want to do is to
state as the specification of each of these
functions, the functional model function,
and the C implementation counterpart, do
the same thing. VST is a great tool for
such proofs!
<click> Let’s zoom in on the to_nat
function, which converts a primitive
integer to a Coq natural number, and let's
talk about its VST specification.

If we were to write by hand, here’s
what that specification would look like.
There’s a lot here, and you don’t have
to follow the details. Very very roughly,
what we are saying here is this:
<click> Given some runtime info, and
an input to the functional model,
<click> if the C function takes a value
that is represented by that functional
model input,

8

Definition uint63_to_nat_spec : ident * funspec :=
DECLARE _uint63_to_nat
WITH gv : gvars, g : graph, roots : roots_t, sh : share, x : {_: FM.uint63 & unit},

p : rep_type, ti : val, outlier : outlier_t, t_info : thread_info
PRE [thread_info; int_or_ptr_type]
PROP (writable_share sh; @graph_predicate FM.uint63 g outlier (projT1 x) p)
PARAMS (ti, rep_type_val g p)
GLOBALS (gv)
SEP (full_gc g t_info roots outlier ti sh gv; mem_mgr gv)

POST [int_or_ptr_type]
EX (p' : rep_type) (g' : graph) (roots': roots_t) (t_info': thread_info),
PROP (@graph_predicate nat g' outlier (FM.to_nat (projT1 x)) p’;

gc_graph_iso g roots g' roots’;
frame_shells_eq (ti_frames t_info) (ti_frames t_info’))

RETURN (rep_type_val g' p’)
SEP (full_gc g' t_info' roots' outlier ti sh gv; mem_mgr gv).

user's Coq proof

We claim that
the function body

satisfies this spec.

FM.uint63

FM.uint63

FM.to_nat (projT1 x)nat

...

Given some runtime info,
and an input in the
functional model,

if the C function takes
a value that is

represented by
the functional model input,

then the C function
returns a value that is

represented by the
functional model output.

Lemma body_uint63_to_nat :
semax_body Vprog Gprog f_uint63_to_nat uint63_to_nat_spec.

Proof. ... Qed.

<click> then the C function returns a value
that is represented by the functional
model output.

There are a lot of details about how the
memory heap is represented by a graph,
and how garbage collection can change
this heap graph but the new graph is
isomorphic modulo changes in this
function, etc. We don’t have time for this
right now but our tech report explains
these details more clearly.

This is just the specification.
<click> We then claim that the C function
body follows this specification and write
the proof by hand.
The cool part is, if we have a complete
proof of this, that means our foreign

function is
1) type-safe
2) correct with respect to the functional
model.
(Though we do not have a proof of type-
safety since it requires reasoning across
meta-levels)

I know this slide is overwhelming.
Thankfully only certain parts of it vary
from function to function.
<click> and as long as we can account for
those variations, we can actually generate
this spec automatically.
And making that possible is one of my
contributions in my thesis (joint work with
Stark and Appel).

Here’s what generating this spec
looks like.

<click> We have a function
description, which includes everything
we need to know about this function.
Most importantly, it has
<click> a reified description of the
function type. Thanks to this
description, we can ensure that the

9

Definition to_nat_desc : fn_desc :=
{| fn_type_reified :=

ARG FM.uint63 opaque (fun _ =>
RES nat transparent)

; foreign_fn := C.to_nat
; model_fn := fun '(x; tt) => FM.to_nat x
; fn_arity := 1
; c_name := "int63_to_nat"
|}.

Lemma body_uint63_to_nat :
semax_body Vprog Gprog f_uint63_to_nat (funspec_of_foreign @C.to_nat).

Proof.
...

Qed.

user's Coq proof
function

description

generate function
specification

foreign function and the model function in
this record actually abide by the same
type.

Another important use of the reified
description is the
<click> annotation of each component of
the type with a type class instance. In a
function description, we use these
instances to hold information about how
these types are represented in memory.
Here you can see that we say the input to
to_nat is opaque (i.e. a primitive type) and
its output is transparent (a plain Coq
type).

Once we finish the function description,
we can then
<click> compute a VST specification from

it and start writing our proof.

Not to sound like an infomercial, but
there’s more! We can also generate
the function description automatically
using the generator we wrote with
MetaCoq.

Well, how is that possible? Through a
lot of metaprogramming efforts.

10

MetaCoq Run (fn_desc_gen FM.to_nat C.to_nat "uint63_to_nat").

Lemma body_uint63_to_nat :
semax_body Vprog Gprog f_uint63_to_nat (funspec_of_foreign @C.to_nat).

Proof.
...

Qed.

user's Coq proof
generate function

description

generate function
specification

Well, what do I even mean by
metaprogramming?
Metaprogramming is simply programs
generating or inspecting other
programs.
It comes in all shapes and colors: C
macros are metaprogramming. `eval`
in JavaScript is metaprogramming.
Replacing text in your code before
every compilation is

What is metaprogramming?

11

code generation

inspection

metaprogramming. Template Haskell is
metaprogramming.

There are a few different axes we can
categorize metaprogramming:
- compile-time vs run-time, based on

when the generation or introspection
happens. C macros or Template
Haskell are compile-time, JavaScript’s
`eval` is run-time.

- homogeneous vs heterogenous, based
on which language is generating or
inspecting which. If a language does it
to itself, it’s homogeneous. Template
Haskell, once again, homogeneous.
JavaScript’s `eval`, homogeneous. C
macros, I’d argue are heterogeneous,
the macro directives appear inside C
code but they have their own language

with its own if statements and
definitions and namespaces.

- text-based vs term-based, how
bindings are handled, etc.

Okay, so which kind do we care about
here? Well, in the VeriFFI project, we use
MetaCoq and Ltac for metaprogramming.

MetaCoq is a project formalizing Coq
in Coq, but it also comes with a
“Template Haskell”-like system. This
system lets you express
metaprograms in what is called a
“template monad”. At compile time,
you can run these programs, and
these programs can inspect existing
terms and types, they can generate
new types and terms. They can add

MetaCoq

12

type and term generation

Gallina Gallina

type
and term

inspection

Gallina

new definitions, new type class instances
etc.

Both the language of metaprograms, and
the language our metaprograms
manipulate are Gallina. Therefore, this is a
homogeneous compile-time
metaprogramming system.

The other tool we use for
metaprogramming is Ltac. Ltac is
Coq’s tactic system. It is not
commonly thought as a
metaprogramming system but all it
does it letting the user inspect types,
terms, and proof states. When a
definition is finished, Ltac generates a
proof term, so it does proof term
generation as well.

Ltac

13

proof term generation

Ltac Gallina

type, term,
and

proof state
inspection

Gallina

Ltac has its own language for tactics, but
it generates a different language, Gallina,
so we can categorize it as a
heterogeneous compile-time
metaprogramming system.

So, why am I talking about this? Well,
it’s because I had to make a choice
about how we generate things.
I could choose to take foreign types
and functions (the module
implementations I showed you before),
and generate a scary VST
specification directly from that, using
MetaCoq or Ltac. That’s still a doable
thing (at least with MetaCoq), but that

monolithic vs distilled generation

14

code generation
with metaprogramming

foreign types and functions VST specifications

Problems
1. MetaCoq's representation of Coq terms is "low level" by design.

• Have to work with De Bruijn indices.
• Cannot have mutually recursive type class instances.
• Recursive calls have to refer to a specific fix expression.
• Type class inference has to resolve immediately.
• There is no easy inference based on a context.

2. Metaprograms are harder to reason about!

would require writing a colossal
metaprogram. We can call that approach
“monolithic generation".

There are two problems with this
approach, supposing we use MetaCoq:
<click>

1. MetaCoq's representation of Coq terms is
"low level" by design. They kept the core
language to a minimum, which made it easier
to write proofs about, which is MetaCoq’s
primary goal, but this made it harder to
generate code in the core language. It’s
unavoidable to run into certain issues. The
graph predicate generation part of our
development is more monolithic, so I did run
into these issues and had to come up with
solutions to get around them:

• MetaCoq terms use De Bruijn indices for

bound variables.
• MetaCoq doesn't allow mutually recursive

type class instances so you can only define
one at a time.

• Recursive calls have to refer to a specific
fix expression, which means you cannot
absentmindedly do a recursive call on
constructor arguments and let type class
resolution handle where the call goes.

• Type class inference has to resolve
immediately, not when all the definitions
are finished or anything like that. You
cannot hope that everything will be fine at
the end and avoid rigor.

• There is no easy inference based on a
context. You have to create a context
yourself and then run the inference
primitive in MetaCoq, essentially doing
lambda lifting.

I describe these solutions in my thesis.

The other important reason to avoid
monolithic generation is this:
2. Metaprograms are harder to reason about!
It is harder for us to tell if our metaprogram
generates the right thing, and that it always
works. Reasoning about metaprograms
requires reasoning from a meta-level above,
which is like chopping veggies with oven mitts
on.

Here’s what I suggest instead.
<click> We come up with an
intermediate representation. In my
case, this is the reified description
type.
<click> We can generate these
descriptions using metaprogramming.
<click> But for the rest, we do not
need compile-time metaprogramming.
We can write a Gallina function that

monolithic vs distilled generation

15

code generation
with metaprogramming

foreign types and functions VST specifications

computation

reified descriptions

graph predicates

takes this description and computes a
VST specification.

This way we isolate the metaprogram to
the first half of generation. We generate
the VST spec, by first distilling into a
multi-purpose description, and from there
we can do a lot of things as we wish.

<click> In our verified FFI project, we use
MetaCoq to generate the graph
predicates and reified descriptions. These
are separate generations. The lemmas
about our graph predicates are generated
via Ltac. These predicates and lemmas
are then used in the reified descriptions.

<click> Since I believe this is one of the
scientific contributions of my thesis, I

want to focus a bit more on the reified
descriptions.

Before that, we should have a quick
refresher of what an inductive data
type can look like in Coq. This is
dependent types land, so there might
be some people unfamiliar in the
audience.
(For those who have seen the ICFP
bingo, the vector type has appeared,
you can mark it on your card!)

Inductive vec (A : Type) : nat -> Type :=
| vnil : vec A O
| vcons : forall n, A -> vec A n -> vec A (S n).

16

an inductive data type in Coq

parameter index

argument result

A parameter is a part of the type that
doesn't change among the subterms. The
type A here is a parameter. If your vector
is a vector of booleans, all the subvectors
are gonna be vectors of booleans.
An index is a part of the type that CAN
change among the subterms. Nat here is
an index, indicating the length of the
vector. If your vector is of length 3, the
immediate subterm will have length 2 and
so on.
An argument is a part of a constructor
that holds some value. The cons
constructor has 3 arguments, for
example.
A result is the what the constructor
returns at the end.

Now that we agree on a terminology to

talk about inductive types, let’s talk about
how to describe constructor and function
types.

If we use MetaCoq’s
representation for constructor
types directly to generate things,
we are going to have to deal with
this monster.

<click> These are the parts that
describe the nil and cons
constructors for indexed vectors.

17

({| universes := (LevelSetProp.of_list [Level.level "Top.3"; Level.lzero], ConstraintSet.empty);
declarations :=
[(MPfile ["Top"], "vec",
InductiveDecl
{|
ind_finite := Finite; ind_npars := 1;
ind_params :=
[{| decl_name := {| binder_name := nNamed "A"; binder_relevance := Relevant |};

decl_body := None;
decl_type := tSort (sType (Universe.make' (Level.level "Top.3")))

|}];
ind_bodies :=
[{| ind_name := "vec";

ind_indices :=
[{| decl_name := {| binder_name := nAnon; binder_relevance := Relevant |};

decl_body := None;
decl_type := tInd {| inductive_mind := (MPfile ["Datatypes"; "Init"; "Coq"], "nat");

inductive_ind := 0 |} []
|}];

ind_sort := sType (Universe.from_kernel_repr (Level.lzero, 0) [(Level.level "Top.3", 0)]);
ind_type :=
tProd
{| binder_name := nNamed "A"; binder_relevance := Relevant |}
(tSort (sType (Universe.make' (Level.level "Top.3"))))
(tProd

{| binder_name := nAnon; binder_relevance := Relevant |}
(tInd

{| inductive_mind := (MPfile ["Datatypes"; "Init"; "Coq"], "nat");
inductive_ind := 0 |} [])

(tSort (sType (Universe.from_kernel_repr (Level.lzero, 0) [(Level.level "Top.3", 0)]))));
ind_kelim := IntoAny;
ind_ctors :=
[{| cstr_name := "vnil";

cstr_args := [];
cstr_indices :=
[tConstruct

{| inductive_mind := (MPfile ["Datatypes"; "Init"; "Coq"], "nat");
inductive_ind := 0

|} 0 []];
cstr_type :=
tProd
{| binder_name := nNamed "A"; binder_relevance := Relevant |}
(tSort (sType (Universe.make' (Level.level "Top.3"))))
(tApp (tRel 1)

[tRel 0;
tConstruct
{| inductive_mind := (MPfile ["Datatypes"; "Init"; "Coq"], "nat");

inductive_ind := 0 |} 0 []]);
cstr_arity := 0

|};

MetaCoq description of vec
{| cstr_name := "vcons";

cstr_args :=
[{| decl_name := {| binder_name := nAnon; binder_relevance := Relevant |};

decl_body := None;
decl_type := tApp (tRel 3) [tRel 2; tRel 1]

|};
{| decl_name := {| binder_name := nAnon; binder_relevance := Relevant |};
decl_body := None;
decl_type := tRel 1

|};
{| decl_name := {| binder_name := nNamed "n"; binder_relevance := Relevant |};
decl_body := None;
decl_type := tInd {| inductive_mind := (MPfile ["Datatypes"; "Init"; "Coq"], "nat");

inductive_ind := 0 |} []
|}];

cstr_indices :=
[tApp

(tConstruct
{| inductive_mind := (MPfile ["Datatypes"; "Init"; "Coq"], "nat");

inductive_ind := 0 |} 1 []) [tRel 2]];
cstr_type :=
tProd
{| binder_name := nNamed "A"; binder_relevance := Relevant |}
(tSort (sType (Universe.make' (Level.level "Top.3"))))
(tProd

{| binder_name := nNamed "n"; binder_relevance := Relevant |}
(tInd

{| inductive_mind := (MPfile ["Datatypes"; "Init"; "Coq"], "nat");
inductive_ind := 0 |} [])

(tProd
{| binder_name := nAnon; binder_relevance := Relevant |} (tRel 1)
(tProd

{| binder_name := nAnon; binder_relevance := Relevant |} (tApp (tRel 3) [tRel 2; tRel 1])
(tApp (tRel 4)

[tRel 3;
tApp
(tConstruct

{| inductive_mind := (MPfile ["Datatypes"; "Init"; "Coq"], "nat");
inductive_ind := 0 |} 1 []) [

tRel 2]]))));
cstr_arity := 3

|}];
ind_projs := [];
ind_relevance := Relevant

|}];
ind_universes := Monomorphic_ctx;
ind_variance := None

|});
];

retroknowledge := ...
|},
tInd {| inductive_mind := (MPfile ["Top"], "vec"); inductive_ind := 0 |} [])

While this is a nice, extensive deeply
embedded description, it is too far
from real Coq values. We want a
distilled version of this. And that is the
reified description mechanism we
developed.

As a metaprogramming term,
reifying means representing a
language construct into an explicit
object in a language. Here are we
trying to define an inductive type in
Coq, that describes different parts
of a Coq constructor type or a Coq
function type.

18

Inductive reified (ann : Type -> Type) : Type :=
| TYPEPARAM : (forall (A : Type) `(ann A), reified ann) -> reified ann
| ARG : forall (A : Type) `(ann A), (A -> reified ann) -> reified ann
| RES : forall (A : Type) `(ann A), reified ann.

VeriFFI’s generation library

(* vlength : forall (A : Type) (n : nat) (xs : vec A n), nat *)
Definition vlength_reified : reified InGraph :=
TYPEPARAM (fun (A : Type) (InGraph_A : InGraph A) =>
ARG nat InGraph_nat (fun (n : nat) =>
ARG (vec A n) (InGraph_vec A InGraph_A n) (fun (xs : vec A n) =>
RES nat InGraph_nat))).

(* vcons : forall (A : Type) (n : nat) (x : A) (xs : vec A n), vec A (S n) *)
Definition vcons_reified : reified InGraph :=
TYPEPARAM (fun (A : Type) (InGraph_A : InGraph A) =>
ARG nat InGraph_nat (fun (n : nat) =>
ARG A InGraph_A (fun (x : A) =>
ARG (vec A n) (InGraph_vec A InGraph_A n) (fun (xs : vec A n) =>
RES (vec A (S n)) (InGraph_vec A InGraph_A (S n)))))).

For other mixes of deep and shallow embeddings, see:
“Outrageous But Meaningful Coincidences: Dependent Type-Safe Syntax and Evaluation”. McBride. 2010.
"Deeper Shallow Embeddings". Prinz, Kavvos, Lampropoulos. 2022.

higher-order abstract syntax-ish

annotations

Essentially, we have a different
constructor for each component. Type
parameters, arguments, and the return
type.
<click> Notice that all except the
return type take a function as an
argument.
This might seem familiar to you from
the work on higher-order abstract
syntax, and it is indeed inspired from
that.
The difference here is that we have a
way of telling apart what part of a type
we are looking at, and we can add
extra information about the types we
are dealing with. The annotation
argument (written here as ann) carries

the extra information.
Here we are mixing deep and shallow
embeddings: We use the deep
embedding part to distinguish the
components of a type, but we are
using the shallow part to annotate
these components with a type class
instance.

We already have seen an example
reified description for the to_nat
function, but here’s another example:

<click> We want to describe the type
of the cons constructor for indexed
vectors. Notice that the type class
instances are playing nicely with

dependent types.
<click> We can also describe the type
of a function on indexed vectors.

These descriptions can be
automatically generated from the
function types, using our generators
based on MetaCoq.

There are other approaches that try to
combine deep and shallow
embeddings, namely by McBride, and
also by Prinz et al. Their work is more
general than ours, but our specific
setup of languages allows us to avoid
some of their more complicated
mechanisms involving the universe

pattern. We can simply
<click> annotate the components with
type class instances thanks to this
coincidence, since the language we
are describing is a part of Coq, and we
are annotating with Coq type classes.
Here’s the gist of the reified
descriptions in one sentence: By
making the describer and describee
the same language, and using
higher-order abstract syntax, we
can handle dependent types and
annotate each component in a
concise and type-safe way.

The annotation we have in this
example here talks about how values

of a Coq type are represented in the
heap graph when the program is
compiled to C, but we can annotate
descriptions with anything we want.

Well, why did we go through all this
trouble? What do reified descriptions
buy us? The most important aspect is
type safety. Here we see the
description of the to_nat function,
once again. We have a reified
description inside, and thanks to
that…
<click> when we provide the Coq
references to the C implementation,

What do reified descriptions buy us?

19

Definition to_nat_desc : fn_desc :=
{| fn_type_reified :=

ARG FM.uint63 opaque (fun _ =>
RES nat transparent)

; foreign_fn := C.to_nat
; model_fn := fun '(x; tt) => FM.to_nat x
; fn_arity := 1
; c_name := "int63_to_nat"
|}.

user's Coq proof

1. type safety

and the functional model of this particular
foreign function, we know they have the
right type. How do we know that?...

Here’s how. We can recompute the
type of the foreign function from that
description. Here we see that
converting back to the foreign function
type gives us exactly the type of
C.to_nat. It takes the C version of our
abstract type, and gives back a Coq
nat.

C.uint63 -> nat

Compute (to_foreign_fn_type to_nat_desc).

Compute (reflect to_nat_desc).

20

This is exactly the type of C.to_nat

We can do the same thing for the
functional model. Here we get the type
of the uncurried version of the
FM.to_nat function. This is just more
convenient for VST specs, but we
could have easily computed the
curried type…

{x : FM.uint63 & unit} -> nat

Compute (to_foreign_fn_type to_nat_desc).

Compute (reflect to_nat_desc).

21

This is the curried type of FM.to_nat

…like this. This function takes the
functional model version of our
abstract type, and returns a normal
Coq nat, as it should.

FM.uint63 -> nat

Compute (to_foreign_fn_type to_nat_desc).

Compute (to_model_fn_type to_nat_desc).

22

This is exactly the type of FM.to_nat

Here’s another thing this
representation buys us:
We know dependent type checking
involves evaluation! Our foreign
functions, on the other hand, do not
evaluate. So if we try to prove a
lemma such as this, where we want to
prove the associativity of addition, for
the primitive addition operation, we
have a problem: We cannot unfold the

Lemma add_assoc : forall (x y z : nat),
C.to_nat (C.add (C.from_nat x) (C.add (C.from_nat y) (C.from_nat z))) =
C.to_nat (C.add (C.add (C.from_nat x) (C.from_nat y)) (C.from_nat z)).

Proof.

23

proofs about our Coq program

2. rewrites of primitives to models

definitions of to_nat, from_nat, and add
and continue our proof…

Since they are axioms on the Coq
side, they get stuck! These foreign
functions evaluate when we compile
the program to C, because then they
get realized by C functions, but that’s
not good enough for proofs about the
Coq references of foreign functions.

So, if we wanted to write a lemma like
this, how can we do that if our foreign

Lemma add_assoc : forall (x y z : nat),
C.to_nat (C.add (C.from_nat x) (C.add (C.from_nat y) (C.from_nat z))) =
C.to_nat (C.add (C.add (C.from_nat x) (C.from_nat y)) (C.from_nat z)).

Proof.
unfold C.to_nat.

24

proofs about our Coq program

Error: C.to_nat is opaque.

2. rewrites of primitives to models

functions do not evaluate at compile
time?

Our solution to this is a rewrite
mechanism. We derive a way to
rewrite calls to the foreign functions
into calls to the functional model. If
you have proofs for the VST
specifications we generated earlier,
using these rewrite principles
becomes fair game.

Here we use our rewrite tactic. Notice

Lemma add_assoc : forall (x y z : nat),
C.to_nat (C.add (C.from_nat x) (C.add (C.from_nat y) (C.from_nat z))) =
C.to_nat (C.add (C.add (C.from_nat x) (C.from_nat y)) (C.from_nat z)).

Proof.
intros x y z.
props from_nat_spec.
props to_nat_spec.
props add_spec.
prim_rewrites.

25

proofs about our Coq program

1 goal

x, y, z : nat
============================
FM.to_nat (FM.add (FM.from_nat x) (FM.add (FM.from_nat y) (FM.from_nat z))) =
FM.to_nat (FM.add (FM.add (FM.from_nat x) (FM.from_nat y)) (FM.from_nat z))

2. rewrites of primitives to models

how our goal is now entirely about the
functional model, and from there it's
straightforward to prove this goal.

Under the hood, these tactics depend on
rewriting principles we generate from the
reified descriptions, which look like this…

Here we say, assuming there’s an
isomorphism between the C version
and the functional model version of
the abstract type then you can say,

if you have a primitive integer,
converting it to a nat with the C.to_nat
function is the same as converting it to
a nat with FM.to_nat from the
functional model, where the input to

forall (x : C.uint63),
C.to_nat x
= FM.to_nat (from x)
: Prop

Eval cbn in model_spec to_nat_spec.

Eval cbn in model_spec add_spec.

26

the functional model one is isomorphic to
the starting primitive integer.

The rewriting principle we'll have for
addition says,
if you have two primitive integers,
adding them via the C implementation,
will give the same result as adding
them in the functional model, where
the inputs to the foreign and functional
model versions are isomorphic.

Well, where does this isomorphism

forall (x y : C.uint63),
C.add x y
= to (FM.add (from x) (from y))
: Prop

Eval cbn in model_spec to_nat_spec.

Eval cbn in model_spec add_spec.

27

come from?

Let's take a closer look at this function
description. When we said that the
input is opaque, we actually store an
isomorphism in this description…

28

Definition to_nat_desc : fn_desc :=
{| fn_type_reified :=

ARG FM.uint63
opaque (fun _ =>

RES nat transparent)
; foreign_fn := C.to_nat
; model_fn := fun '(x; tt) => FM.to_nat x
; fn_arity := 1
; c_name := "int63_to_nat"
|}.

generated function description

An isomorphism
between the foreign type and the model type

That isomorphism looks like this. We
assume on the proof level that we can
convert back and forth between the
foreign type and model type. Based
on this assumption, we can write
proofs about the Coq references to
foreign functions, like the associativity
of addition that we just saw.

This is an assumption that is only

29

Definition to_nat_desc : fn_desc :=
{| fn_type_reified :=

ARG FM.uint63
(@opaque FM.uint63 C.uint63 _ Isomorphism_uint63) (fun _ =>

RES nat transparent)
; foreign_fn := C.to_nat
; model_fn := fun '(x; tt) => FM.to_nat x
; fn_arity := 1
; c_name := "int63_to_nat"
|}.

generated function description

Hypothesis Isomorphism_uint63 : Isomorphism C.uint63 FM.uint63.

An isomorphism
between the foreign type and the model type

available at the proof level, but it is a safe
assumption to make if we have VST
proofs for all the foreign functions in the
module. Those VST proofs amount to
equivalence of the C and FM modules,
therefore we can say that the types are
isomorphic. Once again, this is stuff from
COS 326!

We do not, however, have a Coq proof of
this isomorphism yet. It’s not clear to me
how such a proof would go. I suspect it
might require a proof about MetaCoq’s
reification and reflection system, or Coq
modules and their power of abstraction,
among other things. I think this should be
future work.

Now that we all have a better sense of
the VeriFFI project, I want to compare
VeriFFI with existing work on verified
compilers and verified FFIs.

<click> Oeuf is a verified compiler for
a subset of Coq with no user-defined types,
dependent types, fixpoints, or pattern matching. It
doesn’t feature an FFI, but it allows verifying the
wrapper C program to be verified via VST. Oeuf

Œuf
(2018)

Cogent
(2016-2022)

CakeML
(2014-2019)

Melocoton
(2023)

VeriFFI
(2017-2024)

project verified
compiler

certifying
compiler

+ verifiable FFI

verified compiler
+ FFI verifiable FFI verified compiler

+ verifiable FFI

language
pair

subset of
Coq and C

Cogent
and C ML and C toy subset of OCaml

and toy subset of C
Coq and

CompCert C

FFI aims for - safety correctness
+ safety

correctness
+ safety

correctness
+ safety

mechanism - -

not a program
logic but an
oracle about

FFIs

Iris’s separation logic
for multi-language

semantics
VST’s

separation logic

garbage
collection

optional
external GC

no
(unnecessary)

yes
(verified)

has a
nondeterministic

model

yes
(verified)

Comparison with other verified compilers / FFIs

30

allows plugging in a garbage collector if you want to, but
it’s unverified.

<click> Cogent is a restricted functional language with a
certifying (translation validation) compiler. The language
has no general recursion or nested higher-order
functions, but it features a uniqueness type system that
makes garbage collection unnecessary. It allows users to
check if their C foreign functions satisfy this type system
and provides safety that way.

<click> CakeML is a verified compiler for ML. It allows C
foreign functions and accounts for the correctness of the
foreign functions in the compiler’s correctness theorem,
but it doesn’t have a program logic in which the user can
prove foreign functions correct. It has an oracle about
the behavior of foreign functions that the correctness
theorems depend on. And CakeML does have a verified
garbage collector.

<click> Melocoton is a verified FFI project that allows
programs written in a toy subset of OCaml and a toy
subset of C to interact. Users can prove the correctness

and safety of their programs using Iris’s separation logic.
While Melocoton uses the multi-language semantics
based on a combined language, it tries to isolate users
from that and enable language-local reasoning for code
in OCaml or C. It uses a model of a garbage collector to
reason about multilanguage programs.

<click> In comparison, our work, VeriFFI, is built upon on
verified compiler, CertiCoq. It allows reasoning about
both correctness and safety of programs written in
Gallina and CompCert C. One can use VST’s separation
logic to reason about C foreign functions, and it features
a real, verified garbage collector.

Before I finish my talk, I want to
summarize what I think my scientific
contributions are in this thesis.

<click> Reified descriptions can describe
and annotate function types in a concise
and type-safe way, thanks to higher-order
abstract syntax and making the describer
and describee the same language.

The important scientific contributions of my dissertation are

• Reified descriptions can describe and annotate function types
in a concise and type-safe way.

• Given a reified description, we can calculate separation logic
specifications about foreign functions that talk about their
correctness and safety.

• We can assume an isomorphism between the foreign type and
the model type if there’s a module equivalence.

31

See my dissertation for

• Details of glue code, reified descriptions, function descriptions,
constructor descriptions, rewrite principles, and their generation

• Examples, such as primitive bytestrings, I/O and mutable arrays

<click> Given a reified description, we can
calculate (instead of generate) separation logic
specifications about foreign functions that talk
about their correctness and safety.

<click> We can assume an isomorphism
between the foreign type and the model type if
there’s a module equivalence.

There’s a lot more that I didn’t have time for
today
<click> You can read my dissertation to learn
more about glue code, reified descriptions,
function and constructor descriptions, rewrite
principles, and generation of all these. I also
feature more examples in the thesis, such as
primitive bytestrings, programs with
input/output, and mutable arrays.

We just got the news that our POPL
submission about the VeriFFI project was

conditionally accepted, so hopefully you can
also see our paper there.

Thank you for listening. This was
VeriFFI,<click> a Verified Foreign
Function Interface between Coq and
C. Coq program components are
proved correct directly in Coq, C
program components are locally
proved correct using the Verified
Software Toolchain (VST), and the
connection is made via VST function
specifications that are generated by

32

github.com/CertiCoq/VeriFFI

VeriFFI.

Thank you.

