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Abstract

CertiCoq is a compiler from Coq to C that is verified in Coq. Thanks to CertiCoq’s me-
chanically checked proof of compiler correctness, users can be sure that programs they write
and verify inCoq’s rich type system output the same results when compiled toC (and toma-
chine language, via the CompCert verified compiler). However, in practice, large programs
are rarelywritten in a single language; additional languages are used for better performance or
for capabilities that the primary language lacks. In particular, because Coq lacks user-defined
primitive types,mutation, and input/output actions, CertiCoq-compiled codemust interact
with another language to have those capabilities. Specifically, Coq code must be able to call
C code and C code must be able to inspect and generate Coq values and call Coq code. But
what happens to the correctness proofs when these two languages interact?

A foreign C function has to be memory-safe, return the expected result, and have only
the expected side effect. A specification that expresses these requirements must combine
plain Coq, for the functional parts, and a program logic for C (such as the Verified Soft-
ware Toolchain [VST]), for the verification of C functions. While VST is embedded in Coq,
its specification language is quite different. VST proofs about C foreign functions do not di-
rectly translate to proofs about Coq primitives either. Bridging this gap by connecting plain
Coq and VST theorems requires a system of techniques and methods, many of which are
made feasible by using metaprogramming as a general methodological approach. In this dis-
sertation, I describe these techniques and methods. Using these methods, the user can relate
foreign functions and types to their functional models, generate VST specifications about
the foreign C functions, and write plain Coq proofs about the Coq counterparts of the for-
eign functions. I also provide examples of Coq programs with primitive types, mutation,
and I/O actions, along with specifications and proofs about these programs, to demonstrate
VeriFFI, the verified foreign function interface for CertiCoq.
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1
Introduction

A bird may love a fish but where would they build a home together?

Tevye, Fiddler on the Roof (play by Joseph Stein, 1964)

If you have ever visited a bilingual household, you may have heard people mix languages.

For example, remarks like “Oy vey, I can’t schlep all the way to New Jersey!” would not be

unusual in a household where both English and Yiddish are spoken. The main reason for

this switch of languages within a single sentence is the desire for higher expressive power.

There is no good English translation for oy vey, and “have a tedious and exhausting trip” is a

mouthful, while schlep is easy to say. By using phrases and words from another language, one

can articulate ideas more effectively or efficiently!

A similar need arises in programming languages as well. When a single language is not

sufficiently expressive or when it lacks certain capabilities, programmers turn to additional

languages whose features can be used within the first language. Programs written in this way

are referred to asmultilanguage programs [71]. Another compelling reason to opt for mul-

tilanguage programs is code reuse. If you already have a substantial portion of your program

written in another language, it is practical to simply call that code from your primary lan-

guage, use its results, and call it a day. Consequently, almost all programs in the modern

software world are multilanguage programs, as it helps save both time and money.
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In contrast to how modern software is written, efforts to formally verify software pre-

dominantly concentrate on specifying and proving the correctness of programs composed

in a single language. The question of how to verify multilanguage programs has attracted

great theoretical interest [3, 79, 80, 82], but when I embarked on this dissertation these so-

lutions had not yet been implemented in a real programming language setting. Since then,

some projects have addressed this question for a setting where the higher-level language is

restricted [31, 51]. In this dissertation, I will address this question for a setting where the

higher-level language is a full, dependently typed, purely functional programming language

called Coq, and the lower-level language is C.My dissertation does not constitute a complete

answer to this question, but it provides a road map for one and introduces mechanisms that

automate some steps in the process.

In this dissertation, I present a framework inwhichCertiCoq [4], a verified compiler from

Coq to C, implemented and verified in Coq, can be used to implement a foreign function

interface that allows verification of foreign functions. I will explain how we generate C glue

code about Coq inductive types and functions, how we generate separation logic specifica-

tions about the glue code, how to use the generated glue code in our foreign functions, how

we generate separation logic specifications about the foreign functions in relation to their

functional model, and finally how we generate axioms that can rewrite propositions about

opaque foreign functions. All the separation logic specifications and proofs in this disserta-

tion are written in Coq, using the Verified Software Toolchain (VST) [11].

This dissertation, however, does not provide a mechanized proof that the axioms we gen-

erate about foreign functions are justified by the soundness of the VST system. This thesis

also does not attempt to provide an overall proof of correctness for code generation that in-
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cludes foreign functions [96]. These points are left as future work, and we believe these are

achievable goals.

While the methods we discuss in this dissertation are described for a foreign function in-

terface toC, themethods themselves are language-agnostic. One can apply the samemethods

to build a foreign function interface on top of a CertiCoq backend for a different language.

One such backend already exists for WebAssembly [73], and others may be implemented in

the future. Our glue code generation, constructor and foreign function description genera-

tion, and specification generation can be used for a future foreign function interface project

for these backends.

1.1 Contributions

From a more technical standpoint, the main contributions of this dissertation consist of:

1. a foreign function interface that allows dependently typed foreign functions

(Chapter 3)

2. type-specific representation predicates of Coq values for the CertiCoq compiler

(Section 4.2)

3. techniques inMetaCoq that allowgenerationof representationpredicates (Section4.3)

4. a novel way to reify Coq types, which is a hybrid of deep and shallow embedding of

Coq types, augmented by annotations of each component (Chapter 5)

5. a method for generating VST function specifications from constructor descriptions

and foreign function descriptions (Chapter 6 and Chapter 7)
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6. a method for generating rewrite principles about the foreign functions based on their

functional models (Section 7.5)

7. examples of foreign functions and foreign types forCoq, including effectful programs,

expressed through monads (Chapter 8).

If you want to compile, try, or use the code described in this dissertation, everything is

available online. The verified compiler from Coq to C discussed in this thesis, CertiCoq, is

available at https://github.com/CertiCoq/certicoq. The proof library about its foreign func-

tion interface, VeriFFI, is available at https://github.com/CertiCoq/VeriFFI.
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2
Background

Here, we seek equipment to tame this gorgon’s head with reflection.

Chapman et al. [25]

2.1 CertiCoq

Traditionally, a compiler is a program that reads code in the source language from a file, trans-

lates it to the target language, and writes the resulting code to a file. The language the com-

piler itself is implemented in is called the host language. The host and source languages are

often different languages. For example, the Elm and PureScript compilers are implemented

in Haskell. For some compilers, the host and the source languages are the same, and they

can compile themselves, these are called self-hosting compilers. The Glasgow Haskell Com-

piler [87, 68], the Rust compiler [69], and more recently the Idris 2 compiler [21] are exam-

ples of such compilers.

Let us take a look at howCertiCoq fits into this general picture. Colloquially CertiCoq is

called “a compiler for Coq in Coq” [4], yet the input method and the pipeline of CertiCoq

differ from traditional compilers. As opposed to most compilers, CertiCoq is not an inde-

pendent program; it was implemented as a Coq plugin. It does not take a file as an input; it

takes a definition name and runs as a command in a Coq session:
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Definition list_sum : nat ᨼ=
List.fold_left (fun x y => x + y) (List.repeat 1 100) 0.

.

list_sum is defined.

CertiCoq Compile list_sum.

.

list_sum.c is generated.

Notice how the user first creates a Coq definition, and then a special Vernacular command

takes the name of this definition and compiles it. Canwe call this compilingCoq? What does

it mean to compile Coq anyway?

The part of Coq that we will consider consists of three languages: Gallina, the term lan-

guage based on the Calculus of Inductive Constructions [36], Ltac, the domain-specific

language for proofs and decision procedures, and Vernacular, the collection of commands

through which we can send queries and requests to the Coq system. These languages can

even appear in the same definition. Here is an example that creates the natural number 2,

accompanied with a proof that 2 is less than 5:

Definition less_than_5 : sig (fun (n : nat) => n < 5).
Proof. exists 2. auto. Defined.

Here, Definition is a Vernacular command for making a new definition. The type of this

definition is a function application term in Gallina, that states that the definition is a sigma

type (i.e. a dependent pair) containing a nat and a proposition that nat is less than 5. In the

next line, that is followed by the ProofVernacular command, which signals that the definition

will be written in Ltac. Indeed, there are two Ltac tactics, the first one of which provides

the witness of existence, namely 2. The second one automatically satisfies the goal of type
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2 < 5. When the Vernacular command Defined is run, the Ltac tactics construct a Gallina

term that satisfies this type. The goal here is simple enough that the auto tactic suffices. For

more complicated proofs, we would either have to use more tactics or use more complicated

decision procedures. In order to see the proof term Ltac generates, we can ask Coq to print

the definition:

Print less_than_5.

.

less_than_5 =
exist (fun n : nat => n < 5) 2 (le_S 3 4 (le_S 3 3 (le_n 3)) : 2 < 5)
: { n : nat | n < 5 }

This term could have been written by hand, but it would take longer, while here running

the auto tactic generates it automatically, and it still works even if the numbers change. In

other words, Ltac scripts are interpreted at compile time to generate Gallina terms. We will

go deeper into the capabilities of Ltac in Subsection 2.3.2.

With this in mind, it would be more accurate to say CertiCoq compiles parsed and type-

checked Gallina terms into C.

2.2 Inductive Types

Inductive types are a mechanism to define custom data types in Coq. They are a generaliza-

tion of algebraic data types you find inmainstream typed functional programming languages

like Haskell andML.1

1Not to be confusedwith generalized algebraic data types [30] (GADTs), another generalization of algebraic
data types influenced by inductive types, but a less expressive one. There is much larger literature on adding
mechanisms to these languages to approximate inductive types, but that is not the topic of this dissertation.
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Most values that wewill inspect or generate inCoqwill be values of inductive types. Their

generality requires us to be precise about our terminology, therefore itwill be helpful to revise

the terms we use to refer to different parts of an inductive type. Here is the classic example of

an inductive type, the vector type, which is a kind of list indexed by its length:

Inductive vec (A : Type) : nat -> Type 0=
| vnil : vec A O
| vcons : forall {n}, A -> vec A n -> vec A (S n).

argument result

indexparameter

Figure 2.1: The definition of the vec type in Coq.

The code above defines a type vec with two data constructors: vnil and vcons. While vec is

the name of the inductive type, it doesn’t have the type Type, unlike a type like nat. This is

because vec itself needs to take arguments. In other words, vec is a type constructor. When the

word “constructor” is used alone, it refers to data constructors. The term “data constructor”

is only used in contrast to type constructors.

The first of vec’s arguments is an example of a parameter, and the second is an example of

an index [40]. Both parameters and indices are arguments to the return type of the inductive

type. Parameters arewritten before the colon in the type signature of the inductive type being

defined, while indices come after. Parameters must remain consistent across all constructors’

return types, while indices can vary. It is worth noting that all the return types in vec have A as

the first argument, but the second argument varies between O or S n. Thanks to this variation,

the vec type can be indexed with different list lengths.
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Notice that vnil takes no arguments, whereas vcons takes three. The first argument that

vcons takes is named n, while the other two arguments remain unnamed. This argument is

named because the return type depends on it, whereas no type depends on the other two

arguments. The type of this argument, nat, can be omitted here since the type checker can

infer it based on the type of vec.

Implicit and Explicit Arguments The curly braces around n, the first argument of

vcons, tell the Coq type checker that this argument is implicit, which means this argument

will be skipped in a normal application of vcons, and the Coq type checker will try to infer it

depending on the context.

Check vcons.

.

vcons
: ?A -> vec ?A ?n -> vec ?A (S ?n)

where
?A : [ |- Type]
?n : [ |- nat]

By adding @ in front of a function or inductive type name, we can turn all implicit argu-

ments in the type into explicit arguments:

Check @vcons.

.

@vcons
: forall (A : Type) (n : nat), A -> vec A n -> vec A (S n)
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Inspecting Inductive Values Values of inductive types can be inspected by match ex-

pressions. The programmer canwrite functions that contain match expressions (and ones that

do not) using the fun keyword in Gallina or the Definition keyword in Vernacular, as we have

seen in the list_sum example. Recursive functions, however, need to be defined using the fix

keyword in Gallina or the Fixpoint keyword in Vernacular:

Fixpoint vlength {A : Type} {n : nat} (xs : vec A n) {struct xs} : nat ᨼ=
match xs with
| vnil => O
| vcons x xs' => S (vlength xs')
end.

Definition vmap ᨼ=
fix vmap {A B : Type} {n : nat}

(f : A -> B) (xs : vec A n) {struct xs} : vec B n ᨼ=
match xs with
| vnil => vnil
| vcons x xs' => vcons (f x) (vmap f xs')
end.

Here, we define two recursive functions. The first function, vlength computes the length

of a vec. The second function, vmap transforms all the elements of a vecby applying the higher-

order function f.

In these examples, vlength is defined using Fixpoint, and vmap is defined using fix. In prac-

tice, top-level recursive functions are usually defined using Fixpoint. The fix syntax is usually

reserved for when we have to write or generate Gallina terms, or when we have to define re-

cursive auxiliary functions within other functions.
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2.3 Metaprogramming Facilities

A simple definition of metaprogramming is the generation or analysis of programs by other

programs. By this broad definition, Cmacros [104] are metaprogramming, JavaScript’s eval

ismetaprogramming, even replacing text in code before compilation counts asmetaprogram-

ming. Metaprogramming comes in many different shapes and colors.

In this thesis, we will use MetaCoq, a homogeneous generative metaprogramming [19]

system for Coq, and Ltac, a tactic language for Coq proofs. We will also later develop our

ownmetaprogramming abstractions that are based on these two systems.

2.3.1 MetaCoq

MetaCoq is a project formalizing Coq in Coq, and it comes with a quoting mechanism for

Coq [5, 103]. It provides primitives in Coq that can use and manipulate Gallina terms and

types based on a deeply embedded description of Gallina terms, which can also be viewed as

abstract syntax trees of Gallina terms within Gallina.

Here we see an example of a quotation, i.e. converting an expression into a deeply embed-

ded description, i.e. the term type in MetaCoq.

MetaCoq Run (tmQuote true >>= tmPrint).

.

tConstruct
{| inductive_mind ᨼ= (MPfile ["Datatypes"; "Init"; "Coq"], "bool")
; inductive_ind ᨼ= 0 |} 0 [] : term

The description of the term true above tells us that true is the zeroth constructor of the

type bool, which is located in the Coq.Init.Datatypesmodule.
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For top-level quotations, we often use the <% ᱙Კ᳙ %> syntax, defined as a simple Coq nota-

tion using the primitive tactic fromMetaCoq:

Check <% andb %>.

.

tConst (MPfile ["Datatypes"; "Init"; "Coq"], "andb") [])
: term

The description of the term andb tells us that andb is a constant definition that is located in

the Coq.Init.Datatypesmodule.

Here is an example of an unquotation (also called antiquotation or splice in the literature),

converting a deeply embedded description into an expression. We have the term description

of the variable referring to the logical “and” operator for Boolean values. By unquoting it, we

can obtain the actual andb function.

MetaCoq Run (tmUnquoteTyped _
(tConst (MPfile ["Datatypes"; "Init"; "Coq"], "andb") [])

>>= tmPrint).

.

andb

For top-level unquotations, we often use the ~( ᱙Კ᳙ ) syntax, defined as a simple Coq no-

tation using the primitive tactic fromMetaCoq.

This is quite similar to systems like untyped2 Template Haskell (TH) [99]. Both systems

have a deeply embedded description type for expressions (Exp for TH and term forMetaCoq),
2A template metaprogramming system makes code fragments first-class values. An untyped template meta-

programming system would give these code fragments the same type, such as the term type in MetaCoq or the
Exp type in Template Haskell. A typed template metaprogramming system would give code fragments types
based on the code in the fragment, such as .<1+2>. : int code in MetaML [111].
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a monadic interface for primitive actions (Q for TH and TemplateMonad for MetaCoq), and a

language primitive to run them ($(᱙Კ᳙) splicing in TH and the MetaCoq Run Vernacular com-

mand inMetaCoq).

The primary features of MetaCoq we use are

1. generating terms

2. generating definitions and type class instances

3. generating proof obligations

4. inspecting inductive types

and we want to show examples of these in this section.

GeneratingTerms Let us startwith generating terms. The classic example of generative

metaprogramming systems is generating a specialized power function [98, 110, 37, 93, 106].

This example is useful for illustrating the capabilities of a typed metaprogramming system,

and how well it can handle quasiquoting and scoping. As of the time this thesis is written, a

dependently typedMetaML-style metaprogramming system is an active research area and an

unsolved problem for a full language [56, 121].

In the most naive form, you would write the power function as such:

Fixpoint naive_pow (exponent : nat) (base : nat) : nat ᨼ=
match exponent with
| 0 => 1
| S exponent' => base * naive_pow exponent' base
end.

Observe that this function is recursive, but not tail recursive. One way we can use Meta-

Coq to optimize it to generate a power function specialized to its exponent. Such a func-

tion would allow us to have a non-recursive power function for a fixed exponent, such as
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fun x ᷔṌ x * (x * x) that takes a number to its 3rd power. Here is a function that produces

the deeply embedded description of such a function, given an exponent:

Definition make_specialized_pow (exponent : nat) : term ᨼ=
let fix aux (exponent : nat) (base : term) : term ᨼ=
match exponent with
| 0 => <% 1 %>
| S exponent' => tApp <% Nat.mul %> [base; aux exponent' base]
end

in tLambda {| binder_name ᨼ= nNamed "n"; binder_relevance ᨼ= Relevant |}
<% nat %>
(aux exponent (tRel 0)).

Now we can call the specialized power function generator with a specific exponent, un-

quote the result, and observe the generated function term:

Check ~(make_specialized_pow 3).

.

fun n : nat => n * (n * (n * 1)) : nat -> nat

Notice that this specialized power function cubes the input nonrecursively, unlike the

naive_pow function. Therefore, our initial goal has been achieved.

GeneratingDefinitions andTypeClass Instances The function term generated

by make_specialized_pow is not made into a definition yet. Ideally, the programmer would

generate a definition specialized for a particular exponent and reuse it. Now, let us generate

a definition using MetaCoq.

Definition generate_specialized_pow (exponent : nat) : TemplateMonad unit ᨼ=
name <- tmFreshName (append "pow" (string_of_nat exponent)) ᱶᲶ
fn <- tmUnquoteTyped (nat -> nat) (make_specialized_pow exponent) ᱶᲶ
tmDefinition name fn ᱶᲶ
ret tt.
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This function takes an exponent, such as 3, and generates a function named pow3, defined

as the function term generated by make_specialized_pow above:

MetaCoq Run (generate_specialized_pow 3).
Compute (pow3 2).

.

8 : nat

In this thesis, we will use Coq’s type classes [102] as a way of organizing generated data,

therefore it is useful to see an example use of MetaCoq with type classes.

Type classes, as defined in Haskell literature, usually are indexed by other types, and they

are used for overloading a single function name for different types. Type classes in Coq are

built upon dependent records. Like inductive types, they can have any kind (not just types)

of parameters. Here we can overload a single function name for different nats used as fixed

exponents.

Class Pow (exponent : nat) : Type ᨼ=
{ pow : forall (base : nat), nat }.

Instance Pow2 : Pow 2 ᨼ= {| pow ᨼ= ~(make_specialized_pow 2) |}.

Definition special_pow (exponent : nat) `{Pow exponent} (base : nat) : nat ᨼ=
@pow exponent _ base.

Here we define a type class that is parametrized by the exponent, which is a nat, and then

we write instances of this type class for each fixed exponent we want to specialize for. Then

we define the special_pow helper function, which makes the exponent argument explicit, but

the type class instance implicit. Nowwe can call this function to get the square of a number:
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Compute (special_pow 2 3).

.

9 : nat

Ideally, we would not have to write the instances of the Pow type class by hand, so let us

utilize MetaCoq to generate them automatically up to a certain exponent:

Definition generate_pow_instance (exponent : nat) : TemplateMonad unit ᨼ=
name <- tmFreshName (append "Pow" (string_of_nat exponent)) ᱶᲶ
fn <- tmUnquoteTyped (nat -> nat) (make_specialized_pow exponent) ᱶᲶ
@tmDefinition name (Pow exponent) {| pow ᨼ= fn |} ᱶᲶ
mp <- tmCurrentModPath tt ᱶᲶ
tmExistingInstance export (ConstRef (mp, name)).

Fixpoint generate_pow_instances (exponent : nat) : TemplateMonad unit ᨼ=
generate_pow_instance exponent ᱶᲶ
match exponent with
| O => ret tt
| S exponent' => generate_pow_instances exponent'
end.

The first function generates an instance for a particular exponent, while the second one

generates instances for all natural numbers less than or equal to the one it starts from. Here

is an example use:

MetaCoq Run (generate_pow_instances 5).
Compute (special_pow 4 2).

.

16 : nat

Remember that this will only work if there is a Pow instance for the particular exponent we

want to use. If there is no such instance, the Pow instance will remain an unsolved existential

variable.
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GeneratingProofObligations As you can observe in the make_specialized_pow func-

tion, term generation withMetaCoq can be quite verbose. This is due toMetaCoq’s design:

MetaCoq reifies terms as they are in the core language of Coq, where all syntactic sugar has

already disappeared. In the core language, there are no notations, records have become in-

ductive types, and implicit arguments have become explicit. Therefore all generated code has

to be verbose core-language code. This gets especially tricky when we are generating compli-

cated proofs. At times like this, Ltac is a more useful tool for generating proofs. Therefore,

we use the feature of MetaCoq that creates obligations.

To set up an example for this feature, let us revise the Pow type class and add a field stating

that the specialized power function has to return the same result as the naive power function:

Class Pow (exponent : nat) : Type ᨼ=
{ pow : forall (base : nat), nat
; eq_naive : forall (base : nat), pow base = naive_pow exponent base
}.

Now we will have to update the generate_pow_instance function to generate the eq_naive

field as well. In order to avoid generating this proof with the core language terms withMeta-

Coq, we can discharge this term as an obligation and later use Ltac to satisfy that obligation.

Definition generate_pow_instance (exponent : nat) : TemplateMonad unit ᨼ=
name <- tmFreshName (append "Pow" (string_of_nat exponent)) ᱶᲶ
fn <- tmUnquoteTyped (nat -> nat) (make_specialized_pow exponent) ᱶᲶ
eq_name <- tmFreshName (append "eq" (string_of_nat exponent)) ᱶᲶ
lem <- tmLemma eq_name _ ᱶᲶ
@tmDefinition name (Pow exponent) {| pow ᨼ= fn ; eq_naive ᨼ= lem |} ᱶᲶ
mp <- tmCurrentModPath tt ᱶᲶ
tmExistingInstance export (ConstRef (mp, name)).

Obligation Tactic ᨼ= auto.
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Hereweused tmLemma to create theproof obligationof a certain type (left as _ in the codebut

inferred by the type checker), and later the auto tactic from Ltac solves the proof obligation.

Nowwe can call generate_pow_instances as usual and generate all the Pow instances we need.

Inspecting Inductive Types The final feature of MetaCoq that we use a lot in this

thesis is inspecting an inductive type. Given a term, we can ask MetaCoq to give a detailed

description of the inductive types that are used in the term:

MetaCoq Run (tmQuoteRec nat >>= tmPrint).

.

({| ᱙Კ᳙
declarations ᨼ=

[((MPfile ["Datatypes"; "Init"; "Coq"], "nat"),
InductiveDecl {| ᱙Კ᳙

; ind_params ᨼ= []
; ind_bodies ᨼ=

[{| ind_name ᨼ= "nat" ; ᱙Კ᳙
; ind_ctors ᨼ=

[{| cstr_name ᨼ= "O"
; cstr_args ᨼ= [] ; cstr_indices ᨼ= []
; cstr_type ᨼ= tRel 0 ; cstr_arity ᨼ= 0 |}

; {| cstr_name ᨼ= "S"
; cstr_args ᨼ=

[{| decl_name ᨼ= {| binder_name ᨼ= nAnon
; binder_relevance ᨼ= Relevant |}

; decl_body ᨼ= None
; decl_type ᨼ= tRel 0 |}]

; cstr_indices ᨼ= []
; cstr_type ᨼ=

tProd {| binder_name ᨼ= nAnon
; binder_relevance ᨼ= Relevant |}

(tRel 0) (tRel 1)
; cstr_arity ᨼ= 1 |}]

; ind_projs ᨼ= [] ; ind_relevance ᨼ= Relevant |}] |})] |},
tInd {| inductive_mind ᨼ= (MPfile ["Datatypes"; "Init"; "Coq"], "nat")

; inductive_ind ᨼ= 0 |} [])
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Here we see the description MetaCoq gives, simplified for presentation. We see a mutu-

ally inductive type block, in which we only have one type. We can access the parameters of

the block, types, arguments, names, indices of each constructor. This covers almost all the

information fromMetaCoq that we use in our code generation.

2.3.2 Ltac

Ltac is a domain-specific language for proofs and decision procedures in Coq. Ltac allows

the user tomanipulate the proof state imperatively, through commands called tactics. Tactics

change the proof state, which includes the goals and the context. In an interactiveCoq session,

the user can step forward or backward to see exactly how a tactic changes the proof state.

Tactics can add to or remove from the context. Tactics can create new goals. Tactics can

satisfy goals. Ltac generates a proof term in Gallina when all the goals are satisfied.

Most of the attention in themetaprogramming literature is directed at homogeneousmeta-

programming, where the object andmeta languages are the same. TemplateHaskell [99] and

MetaML [111] are the most prominent examples of this among typed functional languages.

MetaCoq’s quoting mechanism is the Coq equivalent of this tradition [5]. Ltac, although

usually not classified as ametaprogramming language, deserves to be classified as such, only a

heterogeneous one, where the object language is Gallina and the meta language is Ltac [18].

Ltac can inspect Gallina terms and generate new Gallina terms. It operates on the surface

syntax ofGallina rather than a deeply embedded representation ofGallina. MetaCoq, on the

other hand, operates on the deeply embedded representation of the core language. Here is an

example that inspects a term and creates a new term, presented in both Ltac and MetaCoq

for comparison:
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Ltac single_app_tac t ᨼ=
match t with
| ?f _ => let x ᨼ= (constr:(f t)) in idtac x
| _ => fail
end.

Definition single_app_fn A : Type (a : A) : TemplateMonad unit ᨼ=
t <- tmQuote a ᱶᲶ
match t with
| tApp f [_] => tmPrint (tApp f [t])
| _ => tmFail ""
end.

Both the Ltac tactic and theMetaCoq function check if a givenGallina term is an applica-

tion. If it is, then the result is a new term that is the same function applied to the original term,

and this result is printed. If the term is not an application, then the tactic or the function fails.

This tactic can be used to turn S O into S (S O), or to turn negb true into negb (negb true).

Ltac allows pattern-matching not only on Gallina terms but also on the context of the

proof. It allows checking if a given name, or a value whose type fits a certain pattern, is in the

context. Similarly, Ltac can pattern-match on the goal as well:

Ltac destructs ᨼ=
match goal with
| [ x : _ * _ |- _ ] =>

let p1 ᨼ= fresh "p" in
let p2 ᨼ= fresh "p" in
destruct x as [p1 p2]; destructs

| [ |- _ * _ ] => split; destructs
| _ => idtac
end.

This tactic does two different things: If there are any pairs in the context, it destructs them,

i.e. adds the projections of the pair fields to the context (with fresh names) and removes the
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original pair from the context, and recurses to handle any nested pairs that may occur in the

projections. The second thing the tactic does is to check if the goal is a pair as well, and split

that goal into two subgoals, one for each field of the pair, and then it recurses to handle any

nested pairs. The tactic stops when there are no pairs in the context or the goal.

In the thesis, we will use Ltac’s ability to match on goals to pass information fromMeta-

Coq to Ltac. In Section 6.1, we will see that we can create a goal type that is a function call

with an unused argument, where we can pattern match on the unused argument and use it

in Ltac.

Ltac unfortunately does not let us inspect the constructors of an inductive type. While it

is possible to use tactics like case or induction on a value of a given type, and that can give us

some information about the arguments of a constructor, it is not possible to get a general look

over all the constructors of an inductive type, since that would require the ability to consider

multiple subgoals at the same time, which is not possible. However, Ltac provides the ability

to apply a constructor that fits the type of the goal. Using tactics like constructor (or unshelve

econstructor to deal with existential variables), the user can apply a constructor that fits the

goal, without having to pattern-match on the goal type, or without having to knowwhat the

constructors of the goal type are.
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3
The Foreign Function Interface

Since large programs grow from small ones, it is crucial that we develop an arsenal of

standard program structures of whose correctness we have become sure—we call them idioms—

and learn to combine them into larger structures using organizational techniques of proven value.

Alan J. Perlis [2]

In this chapter, wewill showcase a simple use case ofCertiCoq’s foreign function interface

and examine the glue code generated by CertiCoq.

For pedagogical purposes, this chapter discusses implementing in C what one could have

also implemented in Coq (though less efficiently), but later chapters describe foreign func-

tions that could not be implemented in Coq.

The Coq code described in this chapter uses Vernacular commands that are defined in

theCertiCoq plugin, namely CertiCoq Register, CertiCoq Compile, and CertiCoq Generate Glue

commands. In order to be able to run these Vernacular commands, you would have to have

a CertiCoq installation on your machine or in your container.

3.1 An Example Use of the Interface

Suppose we want to have a hand-optimized implementation of a Coq function. Take the

div2 function from the Coq standard library. This function divides a natural number by 2.
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Fixpoint div2 (n : nat) ᨼ=
match n with
| S (S n') => S (div2 n')
| _ => 0
end.

Notice that div2 is not tail recursive, and it allocates memory for the constructor S before

every recursive call. Hence this function is not memory and stack-space efficient. It is pos-

sible to write a more efficient version of this function with tail recursion and no memory

allocations:

Definition better_div2 (n : nat) : nat ᨼ=
let fix aux (n m : nat) : nat ᨼ=
match n , m with
| S n', S (S m') => aux n' m'
| S n', 1 => n'
| _, _ => n
end

in aux n n.

To achieve optimal performance, CertiCoq compiles this function into a tail-recursive C

function. This C function can then be further optimized into a loop by smart C compilers

like CompCert, GCC, or Clang at higher optimization levels. In fact, both GCC and Clang

can generate code that is comparable to hand-written C code for this function. However, we

will show a different approach to compile more complex and compute-intensive functions,

such as cryptographic primitives that couldbenefit fromusingCprimitives such as arrays and

bit-level arithmetic [7]. For simplicity, we will continue to use div2 as a pedagogical example.

To be able to call our function, we have to create an object on the Coq side. We follow

Coq’s traditional programextractionmechanismhere and ask theuser todeclare the function

as an axiom, which will be realized later when we compile our program.
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Axiom best_div2 : nat -> nat.

Once we declare the axiom, we can tell the compiler that this axiom will be realized by a

C function, and where that C function lives. This is achieved through the CertiCoq Register

command:

CertiCoq Register [ best_div2 => "best_div2" ] Include [ "prims.h" ].

Nowwe can declare our C function in a C header file:

value best_div2(value);

CertiCoq representsCoq values inmemory in a uniformway, as wewill describe in greater

detail in Section 4.1. We have the C type value that all Coq values, regardless of their types,

live in. In other words, value is the C type of Coq values represented in C. The arguments

and the result of our function, when realized in C, will all have the C type value.

Finally, we can implement our function in a C source file:

value best_div2(value a) {
value tortoise = a, hare = a;
/* All these function calls will be inlined by the compiler, of course. */
while (get_Coq_Init_Datatypes_nat_tag(hare) == 1) {
tortoise = get_args(tortoise)[0];
hare = get_args(hare)[0];
if (get_Coq_Init_Datatypes_nat_tag(hare) == 1) {

hare = get_args(hare)[0];
} else {
break;

}
}
return tortoise;

}

32



The C implementation of the function accepts a Coq value represented in C as input and

returns a Coq value represented in C as output. Fortunately, users of CertiCoq’s foreign

function interface do not need to have a deep understanding of the internal workings of the

value type or how the representationworks. CertiCoqprovides a set of functions, collectively

known as glue code, that users can use to interact with values, including the functions used

in the above function. In the next section (Section 3.2), we will examine the details of all the

functions automatically generated by CertiCoq in the glue code.

Now we can write a Coq program that uses best_div2 and compile it.

Definition prog : nat ᨼ= best_div2 5.
CertiCoq Compile -file "prog" prog.
CertiCoq Generate Glue -file "glue" [ nat ].

The CertiCoq Compile command compiles a program to C but does not print or use the

result. The generated program, by default, does not print or use the result either. This differs

from other functional languages like Haskell or OCaml. Haskell programs have an effectful

program entry point called main with the type IO (), which is executed when the program

runs. OCaml programs can feature function calls outside of definitions, which runwhen the

program is run, allowing effectful function invocations or an effectful program entry point.

CertiCoq programs do not have these, therefore we need to write a C wrapper file to use the

result from the Coq code compiled by CertiCoq. This C file serves as the program entry

point, one that cannot be written directly in Coq:

#include "gc_stack.h"
#include "glue.h"
#include "prog.h"
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int main() {
struct thread_info *tinfo = make_tinfo();
value result = body(tinfo);
print_Coq_Init_Datatypes_nat(result);
return 0;

}

Inside the main function, we first create the initial thread information object. Then we call

the body function, which evaluates the compiled program, namely prog in our Coq file. We

get the result back and then call a glue code function to print the result. In our case, this

program will print (S (S O)).

The thread information object is a struct that contains the necessary information for the

CertiCoq runtime towork. This includes the call stack, the location andbounds of theCerti-

Coq heap, and the location of the next allocatable spot in that heap [96, 97, 77]. Wewill refer

to this object as the thread info, often abbreviated as tinfowhen used as a function argument

or a local definition.

Any function that potentially allocatesmemory in theCertiCoqheapmust take the thread

info as an argument. Our foreignC function, best_div2, only inspects Coq values; it does not

create new ones. However, if we were to write a version of it that does allocate memory, we

would need to declare that to the CertiCoq compiler when registering the foreign function:

CertiCoq Register [ best_div2 => "best_div2" with tinfo ] Include [ "prims.h" ].

Then the C function type of our foreign function could include the thread info as well:

value best_div2(struct thread_info *tinfo, value);

Now that we have reviewed how CertiCoq’s foreign function interface is used, let us take

a closer look at the glue functions generated by CertiCoq, and how they are implemented.
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3.2 Generated Glue Code

The CertiCoq Generate Glue command takes a sequence of Coq inductive types and generates

corresponding glue functions. For example, if a programmer intends to write foreign func-

tions that interact with Coq lists and nats, they would call this command:

CertiCoq Generate Glue [ list , nat ].

When this vernacular command is run, the compiler generates a file that contains functions

in C that programmers can use when writing foreign functions. Here we will explain every

kind of function generated in detail, in separate subsections. The functions wewill see below

will have some syntactic sugar that your compiler outputmaynot have3, but they are the same

functions otherwise.

Generated C functions that are specialized to a particular Coq type will use the fully qual-

ified name of types. For a function that mentions the list type by name, the function name

will contain Coq.Init.Datatypes.list (but with underscores instead of dots), so that name

clashes are avoided.

3.2.1 Constructing Coq Values

VeriFFI automatically generates C functions that construct the values for each constructor

in each Coq inductive type requested by the user. For instance, for the list type, VeriFFI

generates these functions:

3This is becausewhenCertiCoq generatesC code, it producesClight code, which is a syntactically restricted
subset of C, and then prints it as C code.
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value make_Coq_Init_Datatypes_list_nil(void) {
return (value) 1;

}

value make_Coq_Init_Datatypes_list_cons(value arg0, value arg1, value *argv) {
argv[0] = (value) 2048;
argv[1] = arg0;
argv[2] = arg1;
return argv + 1;

}

value alloc_make_Coq_Init_Datatypes_list_cons
(struct thread_info *tinfo, value arg0, value arg1) {

value *argv = tinfo->alloc;
argv[0] = (value) 2048;
argv[1] = arg0;
argv[2] = arg1;
tinfo->alloc = tinfo->alloc + 3;
return argv + 1;

}

The generated glue function for a constructor can look differently depending on whether

it has boxed or unboxed representation. We provide amore detailed explanation of these rep-

resentations in Section 4.1. Unboxed constructors, like the nil constructor, are represented

as integers at runtime. This can be observed in the make_Coq_Init_Datatypes_list_nil func-

tion. On the other hand, boxed constructors such as the cons constructor, are represented as

pointers to memory locations that store the constructor arguments. This memory can exist

either within the CertiCoq runtime’s garbage-collected memory region, known as the Certi-

Coq heap, or outside of it in what we refer to as theCheap. For the cons constructor, the make_

Coq_Init_Datatypes_list_cons function creates a value in theC heap, while the alloc_make_Coq_

Init_Datatypes_list_cons function creates a value in the CertiCoq heap.
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When creating a value on theCertiCoq heapwith the alloc_make_Coq_Init_Datatypes_list_

cons function, we have to pass the thread info object so that the glue function knows where

to allocate memory.

When creating a value on theC heapwith the make_Coq_Init_Datatypes_list_cons function,

however, we need to pass a pointer to a part ofmemory, namely argv, where the glue function

can build a value. The argv pointer must have enough available memory for the function to

write on. It requires one word for each constructor, and a word right before the pointer to

store header information. It is the programmer’s responsibility to free this memory later or

keep track of what can be freed and when. The CertiCoq garbage collector does not touch

this allocated memory. When allocating on the C heap, one must take care of pointers from

there into the garbage-collected heap. The CertiCoq garbage collector has mechanisms to

manage that, but to avoid such complexity, in this thesis work we have focused mostly on

allocation in the CertiCoq heap.

3.2.2 Discriminating CoqConstructors

For each Coq inductive type, VeriFFI generates a separate C function that allows the user to

determine the constructor used to create a value of that type. For example, for the list type,

the function would be:

unsigned long long get_Coq_Init_Datatypes_list_tag(value v) {
if (is_ptr(v)) {
switch (get_boxed_ordinal(v)) {
case 0:
return 1;

}
} else {
switch (get_unboxed_ordinal(v)) {

37



case 0:
return 0;

}
}
/* In the future, we can add the unreachable() annotation here,

to improve the C compiler's ability to optimize this function. */
}

This function takes a Coq value and returns an integer that matches the word size of your

machine, which we call the tag of the constructor.

A tag is an index (starting from 0) denoting the order of the constructor that was used

to create the value at hand. When the C representation of a Coq value is passed into this

function, it returns 0 for nil and 1 for cons. For further ease of use, the programmer can

define an enum type:

typedef enum { NIL, CONS } coq_list;

The programmer can then treat the result of this function as a value of type coq_list. How-

ever, CertiCoq does not generate this type automatically.

Internally, each constructor has an ordinal, the index of a constructorwithin the construc-

tors of that inductive type with the same boxity. Counting the boxed and unboxed construc-

tors separately is a trick that allows representing a larger number of constructors in the value

type. However, it is important to note that ordinals are specific to the compiler’s implemen-

tation and it is not recommended for FFI users to depend on them while writing C code.

Instead, it is advisable to use tags and glue functions.
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3.2.3 Extracting Arguments of a Coq Constructor

Given a Coq value of an inductive type, we would like to be able to access its constructor

arguments. We have a single C function that works on values of any inductive type, as long

as the value is boxed:

value *get_args(value v) {
return (value *) v;

}

Calling the get_args function on unboxed values, closures, or type values will cause unde-

fined behavior at runtime.

3.2.4 Printing Coq Values

For eachCoq inductive type requested by the user, VeriFFI provides a C function that prints

values of that type. For instance, for the list type, this would be:

void print_Coq_Init_Datatypes_list(value v, void print_param_A(value))
{
unsigned int tag;
void *args;
tag = get_Coq_Init_Datatypes_list_tag(v);
switch (tag) {
case 0:
printf(names_of_Coq_Init_Datatypes_list[tag]);
break;

case 1:
args = get_args(v);
printf(lparen_lit);
printf(names_of_Coq_Init_Datatypes_list[tag]);
printf(space_lit);
print_param_A(get_args(args)[0]);
printf(space_lit);
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print_Coq_Init_Datatypes_list(get_args(args)[1], print_param_A);
printf(rparen_lit);
break;

}
}

Noticehowsince list is a parameterized type, theprinting function takes a functionpointer

to deal with values of the parameter type.

3.2.5 Calling CoqClosures

The CertiCoq compiler represents Coq functions as closures at runtime, which consist of a

function and an environment, but are not directly callable in C. To call these from C, one

must fetch the code-pointer, fetch the environment pointer, and pass the environment as one

of the arguments to the code-pointer function. We have a C function that implements this

protocol:

value call(struct thread_info *tinfo, value clo, value arg) {
value f = ((struct closure *) clo)->func;
value envi = ((struct closure *) clo)->env;
return ((value (*)(struct thread_info *, value, value)) f) (tinfo, envi, arg);

}

Whencompiling a functiondefinitionwithCertiCoq, programmers canuse the call func-

tion to pass arguments to it. The call function also requires the thread info as an argument

because functions within closures need the thread info to performmemory allocation.
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4
Representation Predicates

One might say, by way of excuse, “but the language in which I program has the kind of address

arithmetic that makes it impossible to know the bounds of an array.” Yes, and the man who shot

his mother and father threw himself upon the mercy of the court because he was an orphan.

AndrewW. Appel [6]

In code compiled from Coq to C by CertiCoq, Coq values are uniformly represented in

memory. Foreign C functions called from Coq are expected to take inputs and give outputs

in this representation, yet nothing stops them from flouting this expectation. A violation

of this representation may cause a runtime error, but there is no way to catch it statically

or prove that no such violation exists. In this chapter, I will describe the uniform memory

representationofCoqvalues, Iwill introduce representationpredicates, amechanism to state

the proposition that a Coq value in CertiCoq’s heapmemory truly represents that value and

also respects this uniform representation, unless it is a value of a foreign type with a custom

representation. I will also describe the automatic generation of representation predicates.

4.1 Memory Representation of Values

CertiCoq’s memory representation of values is almost identical to OCaml’s memory repre-

sentation of values [67]. This similarity is no coincidence; it was a design choice that is meant

to provide compatibility with OCaml programs, to have the option to use code written for
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OCaml’s backend (such as its garbage collector) [4], and eventually maybe even to use Certi-

Coq to compile OCaml code.

Since the representation predicates we present in this thesis are so closely tied to the mem-

ory representation of values, let us revisit it and understand how CertiCoq represents Coq

values in memory.

A Coq value is a single word (32 bits or 64 bits depending on the machine) in memory

that is either an unsigned integer or a pointer to another block of words in memory. We fit

all Coq values in this format.

Coq has four kinds of values: types, constructors, function closures, and primitive values.

Types and values of sort Prop are erased from CertiCoq early in the compiler pipeline [4,

96, 77]. Any function that takes a type argument or a Prop value in Coq still takes that argu-

ment in the generated C code, but the erased value is computationally irrelevant: It is never

inspected and is always represented by the integer 1 in CertiCoq’s C runtime.

Constructors have either boxed or unboxed representation. Constructors that take argu-

ments have boxed representation; they are represented by a pointer that points to a block of

words:

<argument> <argument> <argument><header>

<pointer>

...

Figure 4.1: A boxed representation of a constructor.
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Aboxed value has a pointer address, whichpoints to the secondwordof a block inmemory

where there is a header and the arguments of the constructor.

Here is what the header for a boxed constructor looks like when the word size is 64:

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001

bits for the garbage collector ordinal bitssize bits

Figure 4.2: The header of a boxed constructor.

The first 22 or 54 bits (depending on the word size of the machine) of the header signify

the size of the block (in words) that comes after the header. For a boxed inductive Coq con-

structor, this essentially means the number of arguments.4

Constructors that take no arguments have unboxed representation, so there is no header,

and no block, and no pointer: instead there is an odd number.

Here is what an unboxed constructor looks like when the word size is 64:

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001

The last bit is always 1 for unboxed values.ordinal bits

Figure 4.3: An unboxed representation of a constructor.

Function closures are represented as a pointer to a block of memory, where a function

pointer and its environment live. The environment is represented as a linked list in runtime.

However, the environment is not typeable in Coq, as the values in the environments can be

of different types.
4For types that have parameters or indices, keep in mind that the parameter will not exist in runtime, but

the index always will.
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Primitive values have their own custom representations, which we will examine later in

this thesis.

4.1.1 Representation in theHeap Graph

Based on the description above of CertiCoq’s memory representation of values, one might

assume that each Coq value has its own memory block. From a graph theory perspective,

this assumption would have made the CertiCoq heap an out-forest. Each Coq value would

then be represented in the graph as an out-tree. This, while elegant, is unfortunately not the

case. DAGs in the heap graph can occur naturally: For terms such as (x, x) or [x; x; x],

the created object would be a DAG, not an out-tree. Even for Coq values that are created

as out-trees initially, garbage collection can change the graph in a way that violates the tree

properties, specifically because a path in the graphwould not be necessarily unique anymore.

The graphwe arrive at is adirected acyclic graph (DAG)but not an out-forest. The heap graph

below is an example of this change: The object on the left can turn into the object on the right

when the garbage collector runs, if we are using a hash-consing garbage collector [10].

<ptr>

<h> <arg> <arg>

<h> <arg> <h> <arg>

<ptr>

<h> <arg> <arg>

<h> <arg>

Figure 4.4: Two possible memory representations of the term (S O, S O).
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Here on both sides, we see the term (S O, S O). The root of the boxed constructor for

pairs. Each field of the pair is a boxed constructor for the successor constructor S. In both of

the successors, we see an unboxed constructor O. However, since the S O value occurs twice,

the garbage collector can free the memory used for one of them and have both values point

to the same memory block so that the representation is shared between two values.

Since memory blocks are shared for different values, we cannot simply depend on the ∗

connective in separation logic. At this point, we rely on previous work and use the Certi-

Graph library, which helps us reason about graphmanipulating programs inVST [118, 117].

TheCertiGraph project developed amechanically verified garbage collector for theCertiCoq

runtime. We use both their garbage collector implementation in the CertiCoq runtime and

their library of proofs to write our proofs about foreign functions.

4.2 Definition of Representation Predicates

Correctness specifications of constructor glue functions and foreign functions will involve

(among other things) the correct interpretation and production of Coq values in the uni-

form representation we described above. In this chapter, I will describe representation predi-

cates, a mechanism to assert that a Coq value in CertiCoq’s heap memory respects this uni-

form representation, and is equal to a certain Coq value. Using representation predicates, we

can express specifications about the correctness and type safety of glue functions and foreign

functions.

The memory representation of values is uniform, but only for values of inductive types

and closures. Primitive values and values of foreign types are allowed to have custom repre-

sentations, therefore our system shouldbe able to express custom representations. Therefore,
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we use Coq’s type classes [102] to define graph predicates; this allows us to overload a single

function name with different definitions for uniform representations of different inductive

types, and also custom representations of foreign types:

Class GraphPredicate (A : Type) : Type ᨼ=
{ graph_predicate : graph -> outlier_t -> A -> rep_type -> Prop }.

We define a graph predicate as a function that takes the heap graph, the outliers (i.e. the

values that are used but live outside of the CertiCoq heap), an actual Coq value, and a heap

representation, and produces a Prop that posits that the heap representation represents the

given Coq value in the heap graph properly.

For most types, we generate and use the common instance that follows the uniform repre-

sentation. However, the type class mechanism allows the user to write custom instances of

the GraphPredicate type class, where the user can specify the layout of values of a particular

type in the heap graph. As examples for custom representations, we will implement our own

primitive integers in Section 8.1, and our own primitive strings in Section 8.2.

During our proofs, we will need some lemmas about our graph predicate function. These

lemmas are automatically proven for the uniform representation of inductive types, while the

user will have to prove them by hand for custom representations. Because of the intricacy of

their generation (explained further in Section 4.3), these lemmas live in a separate type class:

Class InGraph (A : Type) : Type ᨼ=
{ in_graph_pred : GraphPredicate A
; has_v :

forall (g : graph) (outliers : outlier_t) (n : A) (v : VType),
graph_predicate g outliers n (repNode v) -> graph_has_v g v

; is_monotone :
forall (g : graph) (outliers : outlier_t) (to : nat) (lb : raw_vertex_block)

(e : list edge) (n : A) (p : rep_type),
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add_node_compatible g (new_copied_v g to) e ->
graph_has_gen g to ->
graph_predicate g outliers n p ->
graph_predicate (add_node g to lb e) outliers n p

; outlier_compat :
forall (g : graph) (outliers : outlier_t) (x : A) (p : GC_Pointer),
outlier_compatible g outliers ->
graph_predicate g outliers x (repOut p) ->
In p outliers

}.

This type class contains

• the GraphPredicate instance,

• the has_v lemma, which states that if a value is represented in the graph as a node, then

the vertex of the node is in the graph,

• the is_monotone lemma, which states that a Coq value that is represented in memory

properly can still be represented in memory if a new compatible node is added to the

heap graph,

• and the outlier_compat lemma, which states that if a Coq value is represented in the C

heap (as an outlier), then that pointer will be in the outlier set.

The components of this type class are the work of Stark and Appel. This thesis does not

require a deep understanding of these components because this thesis ismostly aboutwriting

foreign functions and their specifications, and not somuch the proofs of these specifications.

Therefore we will not go further in detail here, but the details of these lemmas can lemmas

can be found in the tech report by Korkut, Stark, and Appel [59].
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Since we now have a type class hierarchy of GraphPredicate and InGraph, we also define the

followinghelper function thatprojects the graph_predicatefieldof the superclass GraphPredicate,

from an instance of the subclass InGraph:

Definition is_in_graph {A : Type} `{InGraph A}
: graph -> outlier_t -> A -> rep_type -> Prop ᨼ=

@graph_predicate A in_graph_pred.

Using these predicates, the users are empowered to write their own specifications and

proofs for their foreign C functions. These predicates are also used to generate specifications

and proofs for CertiCoq-generated glue functions, which can be used as building blocks for

the foreign C functions and their correctness proofs.

For example, the GraphPredicate instance for the vec inductive type looks like this:

Instance GraphPredicate_vec
(A : Type)
(GraphPredicate_A : GraphPredicate A)
(n : nat) : GraphPredicate (vec A n) ᨼ=

let fix graph_predicate_vec
(n : nat)
(g : graph) (outliers : outlier_t) (x : vec A n) (p : rep_type)
{struct x} : Prop ᨼ=

match x with
| vnil => graph_cRep g p (enum 0) []
| vcons arg0 arg1 arg2 =>

exists p0 p1 p2 : rep_type,
@graph_predicate nat GraphPredicate_nat g outliers arg0 p0 /\
@graph_predicate A GraphPredicate_A g outliers arg1 p1 /\
graph_predicate_vec arg0 g outliers arg2 p2 /\
graph_cRep g p (boxed 0 3) [p0; p1; p2]

end
in {| graph_predicate ᨼ= (graph_predicate_vec n) |}.
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4.3 Generation of Representation Predicates

We generate for the GraphPredicate and the InGraph type classes using MetaCoq.

The GraphPredicate type class only contains one field, the predicate function, and is gener-

ated entirely with MetaCoq. We made this design choice because the generated term has

many moving parts: The instance has to quantify over the parameters and indices of the

inductive type. If those parameters are types, then the instance has to quantify over the

GraphPredicate instance of them. Parameters stay the same for the types in the samemutually

inductive block, while indices can vary, whichmeans the fixwe generate has to quantify over

the indices. The GraphPredicate_vec example above demonstrates all of these moving parts.

Instances of the InGraph type class, on the other hand, are generated using a combination

of MetaCoq and Ltac. We use MetaCoq only for generating the types of the instances and

invoking Ltac using tmLemma. While these instances still have quantified parameters and in-

dices, the definitions inside an InGraph instance do not need to use a fix expression, so they

are easier to discharge with Ltac than to build withMetaCoq.

In this section, we will examine the problems we encounter with generating instances for

the GraphPredicate and InGraph type classes, and present techniques to solve these problems.

4.3.1 De Bruijn Notation Conversion

In MetaCoq, variables are represented using a locally nameless [15] approach5. This means

that free variables are represented as names, while bound variables are represented as deBruijn

indices [38]. The term type in MetaCoq, which deeply embeds the core terms of Gallina,
5There is one caveat: While it is common to remove names from quantifiers in a locally nameless represen-

tation, MetaCoq retains them.
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includes 4 constructors that are relevant to variables.

Inductive term : Type ᨼ=
tRel : nat -> term

| tVar : ident -> term
| tEvar : nat -> list term -> term
| tConst : kername -> Instance.t -> term
᱙Კ᳙

tRel represents variables referred to by a de Bruijn index, where the lowest number in tRel

refers to the latest variable binding. tVar represents named variables introduced in Coq sec-

tions or interactive proofs [103]. However, we will use tVar for more than that soon. tEvar

represents existential variables, which do not have locally nameless representation except in

their subterms. tConst represents constants (but not inductive types or constructors), i.e. free

variables that have a fully qualified name.

Let us consider an example of a quoted term that can help illustrate:

MetaCoq Run (tmQuote (fun (A : Type) (a : A) => a) >>= tmPrint).

.

tLambda {| binder_name ᨼ= nNamed "A"; binder_relevance ᨼ= Relevant |}
(tSort ᱙Კ᳙)
(tLambda {| binder_name ᨼ= nNamed "a"; binder_relevance ᨼ= Relevant |}

(tRel 0)
(tRel 0))

Here we are quoting the polymorphic identity function, which takes one argument A that

is a type, and one more argument a of the type A. However, notice that in the result of the

quotation, the lambda body does not mention the type A by name; it is represented by a de

Bruijn index, represented by tRel 0. This is observable in the second argument of the inner

tLambda. The third argument of the inner tLambda construction represents the function body
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in the original lambda, also happens to be tRel 0. The new zeroth de Bruijn index refers to

the argument a, since the latest quantifier is a now.

As we can see from this term, having quoted terms in de Bruijn notation can be confusing

when inspecting quoted terms; it is even more confusing and error-prone to generate terms

to unquote. This is because the code wewant to generate will often have to deal with varying

numbers of indices or parameters of inductive types. Committing to generating code in de

Bruijn notationwill meanwe have to keep track of howmany of these indices and parameters

we have at a given time. Considering the possibility of our generated code introducing new

quantifiers and having complicated dependent types that themselves can contain de Bruijn

indices, it becomes clear that this is unsustainable.

Our solution is to misuse the tVar constructor creatively to have a named representation

for our terms. In this representation, all bound variables will be represented as tVars instead

of tRels. We can define a function that converts between named and locally nameless repre-

sentations. Any term we receive from TemplateMonad primitives or we pass into TemplateMonad

primitives will have locally nameless representation. But for the remaining internal compu-

tation, we can use our named representation.

Definition named_term : Type ᨼ= term.

Definition deBruijn (ctx : list name) (t : named_term) : TemplateMonad term ᨼ=
᱙Კ᳙

Definition closed_deBruijn (t : named_term) : TemplateMonad term ᨼ=
deBruijn nil t.

Definition undeBruijn (ctx : list name) (t : term) : TemplateMonad named_term ᨼ=
᱙Კ᳙

Definition closed_undeBruijn (t : term) : TemplateMonad named_term ᨼ=
undeBruijn nil t.

51



The deBruijn and undeBruijn implementations are quite straightforward. They adhere to

the de Bruijn notation conversion definitions commonly found in programming language

textbooks. We only needed to consider the dependent type system of the Gallina core lan-

guage and the fact that pattern matching in match expressions can alter the number of bind-

ings in the branch body.

4.3.2 Type Class Resolution

MetaCoqdoes not provide amechanism for type class resolutionunder a context. Weneed to

find away tomake unquotable terms quotable (aswewill explain) in order to use the primitive

resolution mechanism. Our solution for this problem is lambda lifting [54].

As seen in the GraphPredicate_vec instance above, we need to call graph_predicate for the

argument types of constructors. Given that graph_predicate is a method of the GraphPredicate

type class, we have to make sure MetaCoq can figure out the type class instance to be used

in the call. The initial solution most MetaCoq users would go for is to leave the instance

argument as a hole, and for MetaCoq to figure out how to fill the hole during unquotation.

Unfortunately, this solution is currently not reliable enough, therefore we will have to infer

these type class instances manually. MetaCoq only provides the following mechanism for

type class resolution:

Check tmInferInstance.

.

tmInferInstance
: option reductionStrategy ->
forall A : Type, TemplateMonad (option_instance A)
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Observe that this TemplateMonad primitive takes a Type, and not a term. This is easy to call

with an actual type class constraint:

MetaCoq Run (tmInferInstance (Some all)
(forall A `{GraphPredicate A} n,
GraphPredicate (vec A n))

>>= tmPrint).

.

(my_Some _ GraphPredicate_vec)

However, when we inspect an inductive type, we usually work with the reified versions

of types and constructors. In order to use the tmInferInstance primitive, we would have to

unquote the term into the Coq value it represents. Unfortunately, unquoting can sometimes

fail. Many intermediate formswe obtainwhile we compute results with terms are not suitable

to unquoting. Consider the following function, one we actually use in the generation of

GraphPredicate instances:

Fixpoint strip_pis (t : named_term) : named_term ᨼ=
match t with
| tProd _ _ rest => strip_pis rest
| x => x
end.

This function takes a full function or constructor type, and removes the surrounding

function type binders (Π-types, hence the function name). If it is given a term representing

forall (A : Type), A, it will return a term that represents A, i.e. the result type of the original

function type.

This function generates unquotable terms for two reasons. One reason is that the stripped

result type will contain free variables, therefore unquoting will fail. The other reason is that

this function generates named_terms, where we have a named representation instead of a de
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Bruijn notation, as described in Subsection 4.3.1. The former problem is handled by lambda

lifting [54], and the latter problem is handled by de Bruijn notation conversion.

When we are generating the branches of the match expression, we want to be able to call

graph_predicate on the arguments of constructors. However, we have to keep in mind that

we are dealing with reified terms representing dependently typed arguments, in named rep-

resentation. We will not be able to ask MetaCoq for an instance of GraphPredicate (vec A n)

because since A and n are free variables, this type class is not even unquotable. To make it

quotable, wehave to turn it into a closed termbyquantifying over the free variables, whichwe

keep as the context, and convert it to de Bruijn notation. Thenwe can call the tmInferInstance

primitive, as seen in the interaction above, and obtain the relevant GraphPredicate instance.

However, the call to graph_predicate cannot solely pass GraphPredicate_vec as the instance,

since the instance quantifies over the free variables even though the graph_predicate call does

not. Therefore we have apply the context to the instance object:

Variable (A : Type)
(GraphPredicate_A : GraphPredicate A)
(n : nat).

Check @graph_predicate (vec A n) (GraphPredicate_vec A GraphPredicate_A n).

.

graph_predicate
: graph -> outlier_t -> vec A n -> rep_type -> Prop

As seen in the arguments passed to GraphPredicate_vec here, applying the context makes

the instance object type check.
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4.3.3 Mutually Recursive Type Class Instances

Coq allows definitions of mutually inductive data types:

Inductive tree (A : Type) : Type ᨼ=
| tleaf : tree A
| tnode : A -> forest A -> tree A
with forest (A : Type) : Type ᨼ=
| fnil : forest A
| fcons : tree A -> forest A -> forest A.

Coq allows definitions of mutually recursive functions as well:

Fixpoint tree_size {A : Type} (t : tree A) : nat ᨼ=
match t with
| tleaf => 0
| tnode _ f => 1 + forest_size f
end

with forest_size {A : Type} (f : forest A) : nat ᨼ=
match f with
| fnil => 0
| fcons t f => tree_size t + forest_size f
end.

Notice that Fixpoint is a vernacular command that can create multiple, mutually recursive

definitions.

However, MetaCoq does not provide a TemplateMonad primitive to create multiple defini-

tions together. It only allows making a Gallina term into a single definition. In Gallina you

cannot define both definitions at once, you have to define each function separately. Gallina’s

syntax for mutually recursive functions allows locally defining all functions but then export-

ing a single one of them at the end (with for followed by an identifier). Here is what these

two functions would look like as stand-alone definitions:
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Definition tree_size ᨼ=
fix tree_size {A : Type} (t : tree A) : nat ᨼ=
match t with
| tleaf => 0
| tnode _ f => 1 + forest_size f
end

with forest_size {A : Type} (f : forest A) : nat ᨼ=
match f with
| fnil => 0
| fcons t f => tree_size t + forest_size f
end.

for tree_size.

Fixpoint forest_size {A : Type} (f : forest A) : nat ᨼ=
match f with
| fnil => 0
| fcons t f => tree_size t + forest_size f
end.

Notice thatwehad to repeat thebodyof the forest_size function. Given that it is a separate

definition, any theorems we prove about the outer forest_size do not directly apply to the

inner forest_size; we would have to unfold the definition tomake sure that they are the same

underneath.

Now, given these restrictions, let us reimagine type class instance generation for mutually

inductive types.

Whenwe define a GraphPredicate instance for a type in amutually inductive type block, we

want to check if we already have GraphPredicate instances for the other types in the block.

If there are, then we do not have to generate graph_predicate functions in a fix block for

them; we can simply call the existing instances if there aremutually recursive calls. If there are

no instances for the types in the same mutually inductive block, then we generate all graph_

predicate functions for the types in that block, place them in a fix expression, and return
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only one of them. For example, the generated GraphPredicate instance for the tree type above

would look like this:

Instance GraphPredicate_tree
(A : Type)
(GraphPredicate_A : GraphPredicate A) : GraphPredicate (tree A) ᨼ=

let f ᨼ=
fix graph_predicate_tree

(g : graph) (outliers : outlier_t) (x : tree A) (p : rep_type)
{struct x} : Prop ᨼ=

match x with
| tleaf => graph_cRep g p (enum 0) []
| tnode arg0 arg1 =>

exists p0 p1 : rep_type,
@graph_predicate A GraphPredicate_A g outliers arg0 p0 /\
graph_predicate_forest g outliers arg1 p1 /\
graph_cRep g p (boxed 0 2) [p0; p1]

end
with graph_predicate_forest

(g : graph) (outliers : outlier_t) (x : forest A) (p : rep_type)
{struct x} : Prop ᨼ=

match x with
| fnil => graph_cRep g p (enum 0) []
| fcons arg0 arg1 =>

exists p0 p1 : rep_type,
graph_predicate_tree g outliers arg0 p0 /\
graph_predicate_forest g outliers arg1 p1 /\
graph_cRep g p (boxed 0 2) [p0; p1]

end
for graph_predicate_tree

in {| graph_predicate ᨼ= f |}.

If we want to generate a GraphPredicate instance for the forest type as well, that can now

use the GraphPredicate_tree instance.
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5
Reification with Annotations
[T]he inherent risk of unintelligibility of reflexivity, has been noted

throughout human history in countless paradoxes. For example, in a Greek myth,

Narcissus became immobile as a result of staring at his own reflection in the water.

Kumiko Tanaka-Ishii [112]

Obtaining a specification from a foreign function’s type or a constructor’s type requires

the ability to traverse the components of the type. Such a traversal requires a method to

inspect types (or at least constructors’ types) as first-class constructs. In this chapter, we will

examine why the existing methods fall short of serving our purposes, and we will introduce a

newmethod that solves our problem.

Traversing types is necessary in many different kinds of homogeneous code generation,

therefore the generic programming and metaprogramming literature has been preoccupied

with it: The Generic Haskell literature achieved code generation at runtime through a rep-

resentation of Haskell’s algebraic data types by deconstructing them into a type that identi-

fies its sums, products, and atomic components [53, 52]. The Template Haskell literature

achieved code generation at compile time through a language primitive that supplies infor-

mation about algebraic data types [99].

MetaCoq follows the Template Haskell tradition. MetaCoq’s tmQuoteRec command in

the TemplateMonad provides all the information about any inductive type and its constructors.
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However, this data is not designed for quick and easy consumption, as it provides a deeply

embedded description of the types, where all the terms are represented in the core language

and they are not easily reflectable. The use of tmQuoteRec we have seen in Subsection 2.3.1

epitomizes the difficulty of parsing through the output in order to generate code quickly.

There are two main challenges contributing to the difficulty: Firstly, the MetaCoq rep-

resentation requires explicit handling of names in binders, even after converting to named

representation. Secondly, the terms obtained from MetaCoq cannot be reflected without

their complete contexts. The solution we will present for our original problem of generating

specifications for functions’ and constructors’ types, will have to address these challenges.

Handling names and binders has long been a persistent issue in programming languages.

One popular solution that circumvents the issue is higher-order abstract syntax [88], which

allows a language implementation to depend on the bindingmechanism of the host language

to implement binding for an object language. From a dependent types point of view, using

the binders of the host language allows proper typing of all dependently typed arguments.

This convenience makes higher-order abstract syntax a good starting point for our solution.

However, our requirements in this thesis are different from describing terms in any lan-

guage. Unlike higher-order abstract syntax, we do not need to describe a full language. We

only need to describe functions’ or constructors’ types, where every component is a type. We

need to be able to traverse the components of the type, and to consider how a given compo-

nent should affect the specification for that foreign function or constructor. This requires

us to consume a type and produce a specification. While dependent type systems allow us to

take a type as an argument, Coq does not allow us to inspect types at runtime.6 Coq’s mech-
6Unlike Idris 2, another dependently typed language, which has the type-case feature that allows inspection

of types at runtime.
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anism that allows us to inspect types and obtain different values accordingly is type classes,

which are resolved at compile time. Since we are not allowed to look for type class instances

at runtime, we should find them at compile time and annotate our representation with the

appropriate type class instances.

Following the fundamental theoremof computer science7, we introduce a newway to rep-

resent function types as data, an intermediate representationbetweenMetaCoqand function

specifications. We will use metaprogramming to obtainMetaCoq’s representation of induc-

tive types and constructors to convert them into our representation, and thenwe can generate

the specifications we need from our intermediate representation, in pure Gallina. This iso-

lates metaprogramming to the first half of this conversion, and simplifies the specification

generation later, and also allows us to reason about the specification generation if we ever

decide to, though we leave that as future work.

At the heart of this intermediate representation is our description type, which is defined

as such:

Inductive reified (ann : Type -> Type) : Type ᨼ=
| TYPEPARAM : (forall (A : Type) `{ann A}, reified ann) -> reified ann
| ARG : forall (A : Type) `{ann A}, (A -> reified ann) -> reified ann
| RES : forall (A : Type) `{ann A}, reified ann.

• The TYPEPARAM constructor represents type parameters of a function or a constructor.

It takes a higher-order function as an argument, where the function takes a Coq type

A as an argument, along with a guarantee that there is an instance of the ann type class,

and returns another reified description. This way the rest of the description has access

to the type parameter and its type class instance in the context.
7“We can solve any problem by introducing an extra level of indirection”, attributed to David J. Wheeler.
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• The ARG constructor represents dependent arguments of a function or a constructor.

ARG takes the type of the argument, a witness that there is a type class instance for that

type, and finally a higher-order function that takes an argument and returns a reified

description. This argument allows us to express dependently typed arguments, since

the argument of the higher-order function can be occur in the rest of the description.

• Finally, the RES constructor represents the result type of a function. RES takes the result

type, and a witness that there is a type class instance for that type.

Our representation is a combinationofdeep embedding and shallow embedding techniques.

Deep embedding is a syntactic description, where constructing an abstract syntax tree is the

priority, while shallow embedding is a representation where the terms are represented di-

rectly in their semantics [49]. The description type that would solve our problems had to be

traversable, therefore we defined it as an inductive type, like a deep embedding. In the argu-

ments of each constructor, however, we see the Coq semantics of the respective concept: for

a type parameter, we have a function that takes a type parameter, for an argument we have a

function that takes an argument, resembling a shallow embedding. This approach allows us

to closely resemble the original function or constructor, while clearly identifying each part

in the type.

Using the reified type, we can now describe types of functions or constructors. While

we use it for generating specifications, the reified type is general-purpose in essence. The

parameter ann allows descriptions to be annotated with instances of any type class that fits

the type Type -> Type.

Before moving on to generating specifications from reified descriptions, let us examine a

simpler use of this type. Let us define a type class that tells us how to convert values of a given
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data type into strings, similar toHaskell’s Show type class. We can define instances of this type

class for some commonly used types, such as nat, bool, and list.

Class ToString (A : Type) ᨼ= { to_string : A -> string }.
Instance ToString_nat : ToString nat ᨼ= ᱙Კ᳙
Instance ToString_bool : ToString bool ᨼ= ᱙Კ᳙
Instance ToString_list {A : Type} `{ToString A} : ToString (list A) ᨼ= ᱙Კ᳙

Now, suppose we want to describe the type of this function:

length : forall {A : Type}, list A -> nat

The function type consists of a type parameter, an argument that follows it, and finally the

result type. The reified description of it also follows the same order:

Definition length_desc : reified ToString ᨼ=
TYPEPARAM (fun (A : Type) {H_A : ToString A} =>
ARG (list A) (fun (_ : list A) =>
RES nat)).

The annotation typewepicked, namely ToString, is visible in the type of length_desc. In the

definition, the H_A is visible, while the annotations in the ARG and RES constructors are implicit

arguments, so they are hidden. Since the implicit arguments are type class instances, Coq’s

type class resolution system should be able to figure out the instance terms. However, we can

choose to write the same description with explicit annotations:

Definition length_desc : reified ToString ᨼ=
@TYPEPARAM _ (fun (A : Type) {H_A : ToString A} =>
@ARG _ (list A) (@ToString_list A H_A) (fun (_ : list A) =>

@RES _ nat ToString_nat)).
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5.1 Consuming Reified Descriptions

Nowwehave an example annotation, whichmakes it easier to demonstrate the functions that

consume reified descriptions. One of these functions is args, which takes a reified descrip-

tion and generates a nested dependent tuple of the types of all type parameters and arguments

in the description:

Fixpoint args {cls : Type -> Type} (c : reified cls) : Type ᨼ=
match c with
| TYPEPARAM k => {A : Type & {H : cls A & args (k A H)}}
| ARG A H k => {a : A & args (k a)}
| RES _ _ => unit
end.

The type parameter case adds two fields to the tuple, one for the type, and one for the type

class instance. The type class instance has to be there so that we can later call the function k,

whose result we can use for a recursive call, which allows the traversal of the reified descrip-

tion to continue. The argument case adds one field to the tuple, the argument. The result

(RES) case is the base case, it adds the unit type as a stop to the nested tuple.

Notice that args generates a Type at the end, which means we can have terms that have the

type args of some description. For the description of the length function we had above, this

term would look as such:

Definition length_args_example : args length_desc ᨼ=
(bool; (ToString_bool; ([true; false]; tt))).

We should note that this term looks like an example call of the length function, namely

@length bool [true; false], which should illustratewhywedeveloped thismechanism: When

we need to write a function that needs to quantify over all the arguments that a function or

a constructor takes, we can use args of a reified description to achieve that.
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Let us write one such function. Since our description length_args_example is annotated by

the ToString type class, we can design a function thatwould take the args for a length function

as an argument, and build a string that contains all the arguments converted to a string. That

function, generalized to any reified description, would look like this:

Equations append_descs (r : reified ToString) (xs : args r) : string ᨼ=
append_descs (@TYPEPARAM k) (A; (H; rest)) ᨼ=

append_descs (k A H) rest ;
append_descs (@ARG A H k) (a; rest) ᨼ=
to_string a ++ " | " ++ append_descs (k a) rest ;

append_descs (@RES _ _) tt ᨼ= "".

This function uses dependent pattern matching, where the type of the second argument

depends on the value of the first argument. While it is possible to write functions with de-

pendent pattern matching in pure Gallina, we present these function definitions using the

Equations plugin [101] for easier understanding. Wewill continue this presentation in other

consumers of reified descriptions when necessary, to avoid convoluted Gallina expressions.

We can observe the dependent pattern matching in how the type of the second argument

changes: In the TYPEPARAM case, the args object, is a nested dependent pair of A, the type, H_A,

the ToString instance, and rest, the rest of the args object. In the ARG case, the args object is

a dependent pair of a, which is the argument of type A, and rest, the rest of the args object.

In the RES case, the args function arrives at its base case, therefore the args object is tt, the

constructor for the unit type. This is a pattern we should expect in functions that take an

args object as an argument.

Let us call the append_descs function with a reified description and an args object that fits

that description, and observe the result we get:
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Compute (append_descs length_desc length_args_example).

.

= "true ᱰᲰ false ᱰᲰ nil | "
: string

Now that we have seen how to write functions that consume reified descriptions, such

as args and append_descs, we can write more functions like that. A remarkably useful one is

result, that traverses the reified description of a function or constructor type and returns the

result type of that function:

Equations result (r : reified ToString) (xs : args r) : Type ᨼ=
result (@TYPEPARAM k) (A; (H; rest)) ᨼ= result (k A H) rest ;
result (@ARG A H k) (a; rest) ᨼ= result (k a) rest;
result (@RES A H) tt ᨼ= (A; H).

We traverse the reified description, by obtaining the rest of the description by calling k and

recursing. In RES, our base case, we return the type that lives in the constructor field A. This is

a good example of how we reap the benefits of our representation, which is only a valid Coq

term because of all the context we preserved in the higher-order abstract syntax.

Now, using args and result, we can write a function that gives us a type that is as close as

possible to the original function or constructor type. In other words, we want to reflect the

type description to an actual Coq type:

Definition reflect {cls : Type -> Type} (r : reified cls) : Type ᨼ=
forall (P : args r), projT1 (result r P).

The type we obtain from this function is essentially the uncurried version of the type of

length. A function of type reflect length_descwould take a nested dependent tuple of all the

arguments (and the annotations for type parameters) and return the same result type. Here

is how that function would be implemented:
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Definition length_uncurried : reflect length_desc ᨼ=
fun '(A; (_; (l; tt))) => @length A l.

The reflect function provides a type-safe way for us to go from the description into the

original function. Using reflect, we canmake sure that the function we have fits the descrip-

tion we were provided.

While it was feasible to derive the curried function type, which closely resembles the orig-

inal constructor or foreign function type, we deliberately opted for the uncurried function

in our implementation of reflect. This choice was driven by the necessity of uncurried func-

tions in our function specifications outlined in Chapter 6 andChapter 7. 8 The other reason

for this choice is that the uncurried function type includes the annotation arguments, while

the curried function does not. Therefore producing the curried one from the uncurried one

makes more sense than producing the uncurried one from the curried one, since we do not

have to make up bogus annotations in the former. Although we avoided the latter approach

in the general scenario, a specific use case taking this route (traversal of a reified description

without an args object) is presented in Chapter 7.

In Section 6.1 and Section 7.1, we explore detailed examples that showcase reified descrip-

tions and their transformation into concrete Coq values. We leverage reified descriptions of

Coq constructors and custom primitive functions to create VST specifications for the gen-

erated glue code and foreign functions in C.

8VST’s WITH clauses have an easier time with a nested dependent tuple of arguments than many dependent
arguments. Also, the language of our foreign function, C, has naturally uncurried functions.
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6
Constructor Specifications

A good programmer builds a working vocabulary.

Guy L. Steele Jr. [105]

In order to compose proofs of Coq programs that build and traverse data structures, with

proofs of C programs that build and traverse those same data structures, the VST separa-

tion logic function specifications for construction and projectionmust be coherent with the

Coq constructors. To accomplish that, we introduce a novel deep and shallow constructor

description, derivable automatically fromMetaCoq descriptions of inductive data types; and

an interpretation of those constructor descriptions into VST function specifications.

Functional programmers from the ML and Haskell tradition often start their program

development by defining inductive types and data constructors. This approach offers a top-

down design strategy, outlining the required data structures, functions, and potential I/O

operations. Should a user opt to implement certain functions as foreign functions, these

functions will likely need to manipulate constructors of the involved inductive types. To as-

sist with this, a glue code generator is available (see Section 3.2), aiding users in writing their

foreign functions in C by offering building blocks for the operations themselves. However,

when it comes to proving properties about these foreign functions, users will require a dif-

ferent set of building blocks – ones suitable for proofs.
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In this section, we present a framework to generate specifications for glue functions. Fur-

ther work not covered in this chapter also proves these specifications about glue functions,

which allows these proofs to be leveraged as building blocks in larger proofs about foreign

functions [59].

6.1 Constructor Descriptions

The glue code generator we presented in Section 3.2 generates glue functions in C that con-

structCoqvalues, such as make_Coq_Init_Datatypes_list_nil or alloc_make_Coq_Init_Datatypes_

list_cons.

We need to produce formal specifications of these constructor-types inVST’s specification

language. Wewill do that with the assistance of our reified semi-deep-embedded description

language. As usual, reifiedmust be supplied with an appropriate annotation type. For data

constructors we will use the following type class that contains all the information we need:

Variant erasure ᨼ= no_placeholder | has_placeholder | present.

Class ctor_ann (A : Type) : Type ᨼ=
{ field_in_graph : InGraph A
; is_erased : erasure
}.

In Section 4.2, we defined the InGraph type class, which consists of a graph predicate and

lemmas about it for a given Coq type. The first field of the ctor_ann type class is an instance

of InGraph for each field of the constructor we want to annotate. Having InGraph instances for

all arguments of a constructor will later allow us to specify how the values of the arguments

are represented in the heap graph.
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The second field, is_erased, tells us whether a constructor field is erased during compila-

tion. Computationally irrelevant values, such as values of type Type, or all values of kind Prop

are erased by CertiCoq’s compilation pipeline. When they are arguments to constructors

or functions, these values are represented as the unit value9 as a placeholder. This replace-

ment would be easy to bake into the InGraph type class: The graph_predicate function would

simply check if the memory representation is the number 1. While those values are erased,

their places are kept and occupied by their placeholders. Some values are entirely erased in

the memory representation, such as parameters of inductive types. For those cases, we want

to track whether a constructor argument is erased, which is what the second field of the ctor_

ann type class does. If an argument to a constructor is not meant to be erased, however, we

say the value is present.

Now that we have a ctor_ann type to annotate our reified descriptions with, we can define

a record that contains all the information we need about a constructor:

Record ctor_desc ᨼ=
{ ctor_name : string
; ctor_reified : reified ctor_ann
; ctor_reflected : reflect ctor_reified
; ctor_tag : nat
; ctor_arity : nat
}.

Along with the name, tag, and arity of a constructor, we include the reified description

of a constructor, in the ctor_reified field. Using dependently typed records, we include one

more field, ctor_reflected, which is the reflected version of the reified description we just

included in the record.
9The unit value is represented as the number 1 in memory, which is the tag 0 shifted once to the left, and

the last bit set to 1.
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Herewe can see some example ctor_desc values for the nil and cons constructors of the list

inductive type:

Definition nil_desc : ctor_desc ᨼ=
{| ctor_name ᨼ= "nil"
; ctor_reified ᨼ=

@TYPEPARAM _ (fun (A : Type) (H_A : ctor_ann A) =>
@RES _ (list A) ({| field_in_graph ᨼ= InGraph_list A (field_in_graph H_A)

; is_erased ᨼ= present |}))
; ctor_reflected ᨼ= fun '(A; (_; tt)) => @nil A
; ctor_tag ᨼ= 0
; ctor_arity ᨼ= 0
|}.

Definition cons_desc : ctor_desc ᨼ=
{| ctor_name ᨼ= "cons"
; ctor_reified ᨼ=

@TYPEPARAM _ (fun (A : Type) (H_A : ctor_ann A) =>
@ARG _ A ({| field_in_graph ᨼ= H_A

; is_erased ᨼ= present |})) (fun (x : A) =>
@ARG _ (list A) ({| field_in_graph ᨼ= InGraph_list A (field_in_graph H_A)

; is_erased ᨼ= present |})) (fun (xs : list A) =>
@RES _ (list A) ({| field_in_graph ᨼ= InGraph_list A (field_in_graph H_A)

; is_erased ᨼ= present |}))))
; ctor_reflected ᨼ= fun '(A; (_; (x; (xs; tt)))) => @cons A x xs
; ctor_tag ᨼ= 1
; ctor_arity ᨼ= 2
|}.

We can also define a type class that allows easy transition from the real Coq constructor

for an inductive type, into the ctor_desc for that constructor:

Class Desc {T : Type} (ctor_val : T) ᨼ=
{ desc : ctor_desc }.
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We can define instances of Desc for every constructor we generate descriptions for:

Instance Desc_nil : Desc @nil ᨼ= {| desc ᨼ= nil_desc |}.
Instance Desc_cons : Desc @cons ᨼ= {| desc ᨼ= cons_desc |}.

This way, a user of our proof interface would only have to call desc @nil or desc @cons to

reach the descriptions of the nil and cons constructors.

It might be worth noting that our Desc type class does not come with a guarantee that

the reified description matches the real Coq value. It would, however, be possible to add a

new field to the Desc type class that checks if the ctor_val value is equal to the reflection of

the reified description. We have not done this for two reasons. The first reason is that this

requires careful handling of the curried and uncurried versions of the constructor, and that

comes with proof engineering challenges. The second reason is that describing the wrong

constructor in the Desc instance means the verification of the function specifications will fail

later, which makes this guarantee less necessary for our use case.

6.2 Generation of Constructor Descriptions

Generation of constructor descriptions is implemented mostly in MetaCoq, with one part

discharged to Ltac as a proof obligation, which is automatically solved by a tactic we provide.

There are two interesting parts to generating a ctor_desc: generating the reified description,

for the ctor_reified field of the ctor_desc record, and generating the reflected version of that

reified description, for the ctor_reflected field of the ctor_desc record.

We achieve the generation of reified descriptions of constructors’ type throughMetaCoq.

MetaCoq’s tmQuoteRec primitive provides all the information needed about the constructors

of an inductive type. A traversal of the types of constructors can generate the necessary
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TYPEPARAM, ARG, and RES constructors. Wewill, however, have to generate ctor_ann instances for

each of the components. A ctor_ann instance, as we have seen earlier, consists of an InGraph

instance, and a field that indicates the erasure of the component in runtime. The InGraph in-

stance can be generated by the method described in Section 4.3, the constructor description

generator would only have to invoke that method. The remaining field of the ctor_ann in-

stance, is_erased, can be generated based on the other metadata provided by the tmQuoteRec

primitive.

We achieve the generation of a term for the ctor_reified field of a ctor_desc record through

a clever Ltac trick, invoked by MetaCoq. We use the MetaCoq primitive tmLemma, which can

create a proof obligation of a given type. When we are generating a ctor_desc, we use tmLemma

to create a proof obligationof the type of ctor_reflected, which is reflect ctor_reified, where

ctor_reified is the value of an earlier field in the record. Then our MetaCoq program calls

our Ltac program to prove that obligation, which is much easier than build the proof term

directly in MetaCoq.

Let us consider the nil constructor as an example to see what the type of ctor_reified

should be for a description of nil:10

Compute (reflect (ctor_reified nil_desc)).

.

= forall (P : {A : Type & {_ : ctor_ann A & unit}}),
list (projT1 P)

: Type

10The result of Compute is presented with some syntactic sugar in these examples.
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Similarly, let us examine the type of the ctor_reflected field for the cons constructor:

Compute (reflect (ctor_reified cons_desc)).

.

= forall
(P : {A : Type & {_ : ctor_ann A & {_ : A & {_ : list A & unit}}}}),
list (projT1 P)

: Type

The implementations of the ctor_reflected fields have to abide by this type. They have to

provide an implementation of the original constructor, just in the uncurried type that the

type of the field requires. As seen in nil_desc and ctor_desc, the ctor_reflected field in both

returns the original constructor at the end. Now, if we are creating a proof obligation of

the type reflect ctor_reified, how do we recover the original constructor when creating the

reflected version in Ltac?

This iswhere it helps to remember thatLtac is ametaprogramming facility that canpattern-

match on surface-level syntax. Ltac’s match is more powerful11 than the match expression of

Gallina, which can only pattern-match on the value of expressions. Therefore, if we create

a proof obligation that contains whatever information we want to pass onto Ltac, but still

evaluates to the original proof goal wewanted to have, thenwe can use Ltac’s match to recover

that information and utilize it in the Ltac script to fill the proof obligation. In other words,

we need a version of reflect that takes the extra information we need to pass onto Ltac as an

argument, and then ignores it:

Definition reflector {cls : Type -> Type} (r : reified cls)
{k : Type} (x : k) : Type ᨼ=

reflect r.
11Ltac’s match and eval can do what Gallina’s match does.
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Notice that the cls and r arguments are the same as reflect, but this new function has two

extra arguments, namely k and x. The first argument k stands for kind, a term commonly

used to refer to types of types in languages with ML-like type systems. While Coq does not

distinguish types and terms as sternly, intuition should help us understand why we need the

extra argument k. The other argument x is meant to be used to pass the original construc-

tor onto Ltac. Since we want to pass the constructors before any application, they will have

different types. (Or kinds, according to the intuition we discussed.) Seeing the types of bare

constructors should clarify that:

Check @nil.

.

@nil
: forall A : Type, list A

Check @cons.

.

@cons
: forall A : Type, A -> list A -> list A

The types of bare constructors would be passed as the k argument.

Using k and x, we can create proof obligations such as @reflector _ ctor_reified _ @nil

or @reflector _ ctor_reified _ @cons, where ctor_reified would be a reified object held in a

ctor_desc record. Then our Ltac tactic can pattern-match on this goal and extract the original

constructor:

Ltac reflecting ᨼ=
match goal with
| [ |- @reflector _ _ _ ?C ] => hnf; reflecting_aux C
end.
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The reflecting_aux tactic, which takes the original constructor term as an argument, can

then be implemented.

Ltac build_ctor C ᨼ=
match goal with
| [P : {_ : ctor_ann _ & _} |- _ ] =>
destruct P; build_ctor C

| [P : {_ : _ & _} |- _ ] =>
let a ᨼ= fresh "a" in destruct P as [a P];
build_ctor constr:(C a)

| [P : unit |- _ ] => exact C
end.

Ltac reflecting_aux C ᨼ=
let P ᨼ= fresh "P" in intro P; simpl in P; build_ctor C.

The reflecting_aux tactic creates a function that takes an args object of the reified descrip-

tion and invokes build_ctor, which traverses the args object by finding the earliest argument

to the described constructor and applying that argument to the original constructor as nec-

essary, but skipping the annotations in the args object. At the end of the traversal, the entire

tactic sequence produces the uncurried version of the original constructor, which satisfies

the type of the ctor_reflected field.

6.3 Generation of Specifications for Glue Constructors

In Section 3.2, we introduced CertiCoq’s glue code generator. The generated C functions

are meant to be used in foreign function implementations, and they can construct, inspect,

or call Coq values. Wewant to allow users of CertiCoq’s FFI towrite foreign functions easily

in C, and also write separation logic specifications and proofs about these functions, using
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the Verifiable C program logic in the Verified Software Toolchain (VST) [11]. However, the

methods we discuss here are independent of the language of the foreign functions.

When we prove properties of foreign functions that use glue code, we do not want to

write specifications and proofs for the glue functions themselves over and over again. Ideally,

we would have generators for these specifications. Generated specifications and generated

proofs would serve as building blocks for foreign function proofs, similar to how generated

glue functions serve as building blocks for foreign function implementations.

In this section, we describe the generation of specifications for the glue functions that con-

struct Coq values in CertiCoq heap, such as alloc_make_Coq_Init_Datatypes_list_cons. Our

generator can generate the specification for such a function for any constructor that has a

constructor description, i.e. a ctor_desc record, such as cons_desc.

Before we start the generation of specifications, we should clarify what we want to specify

about the glue function that constructs a Coq value. We already discussed alloc_make_Coq_

Init_Datatypes_list_cons in detail in Section 3.2, therefore that is a good example to follow

here as well:

Definition alloc_make_cons_spec (A : Type) `(InGraph A) : funspec ᨼ=
WITH gv : globals, g : graph, x_p : rep_type, xs_p : rep_type,

x : A, xs : list A, roots : roots_t, sh : share,
ti : val, outlier : outlier_t, t_info : GCGraph.thread_info

PRE [[ [ thread_info ; int_or_ptr_type ; int_or_ptr_type ] ]]
PROP (is_in_graph g outlier x x_p ;

is_in_graph g outlier xs xs_p ;
2 < headroom t_info ;
writable_share sh)

PARAMS (ti ; rep_type_val g x_p ; rep_type_val g xs_p)
GLOBALS (gv)
SEP (full_gc g t_info roots outlier ti sh gv)
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POST [ int_or_ptr_type ]
EX (p' : rep_type) (g' : graph) (t_info' : GCGraph.thread_info),

PROP (is_in_graph g' outlier (@cons A x xs) p' ;
headroom t_info' = headroom t_info - 3 ;
gc_graph_iso g roots g' roots ;
ti_frames t_info = ti_frames t_info')

RETURN (rep_type_val g' p')
SEP (full_gc g' t_info' roots outlier ti sh gv).

This dissertationdoesnot include abackground sectiononVSTspecifications 12, therefore

let us write down what this specification says in plain prose:

Assume these preconditions hold for alloc_make_Coq_Init_Datatypes_list_cons:

• This function takes three arguments (PARAMS), one for the thread info and two
Coq values, whose C representations can be recovered from x_p and xs_p.

• The first value x_p represents the head of the list, x : A, in the CertiCoq heap
graph, as stated by is_in_graph g outlier x x_p in the propositional part (PROP) of
the precondition (PRE).

• The second value xs_p represents the tail of the list xs : list A, in the CertiCoq
heap graph, as stated by is_in_graph g outlier xs xs_p in the propositional part
of the precondition.

• There are at least two words of memory (headroom) left in the thread info object
t_info, which contains all the runtime information we need.

• The entire graph g is represented as structs and pointers in theCprogram’smem-
ory, as stated by the separation logic part (SEP) of the precondition.

Assuming these preconditions, the following postconditions should hold for alloc_
make_Coq_Init_Datatypes_list_cons:

• This function returns aC representation p’, which represents the value cons x xs
in the CertiCoq heap graph.

• The number of words available (headroom) in the thread info object t_info’ has
decreased by 3, compared to the old thread info object t_info.

• Anything reachable in the heap graph g before the function call is reachable after
the function call in graph g’.

12See Appel et al. [11] for a formal description of VST. For an up-to-date reference manual, see Appel et al.
[13]. For a introductory book, see Appel et al. [12].
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• Pointers into the heap graph, that are local variables of C functions on the stack
that called this one, have not been changed in thememory of those frames, states
as the equality of the ti_frames fields of the thread info objects before and after
the function call.

• The new graph g’ is represented in the C programmemory, as stated by the sep-
aration logic part of the postcondition.

The specification we present above may look complicated to unfamiliar eyes, but its layers

of complexity are already hidden in abstractions. VerifiableCusesVST’s separation logic and

CompCert’s C syntax, both embedded in Coq, with custom syntax through clever uses of

Coq’s notation system. VeriFFI uses Verifiable C and CertiGraph to reason about the Certi-

Coq heap graph, and MetaCoq to generate representation predicates about types. These

predicates are used through function calls in the specification above.

The next step we have to take is to generalize this specification to any constructor with a

constructor description. To achieve this generalization, we have to

1. quantify over all arguments of the constructor, and their C representations,

2. generate the C function type based on the constructor arity,

3. specify in the precondition that all arguments of the constructor are represented by the

corresponding C representation, according to our memory representation predicates,

4. specify in the postcondition that the function result is aC representationof the correct

Coq value, the constructor we want with the arguments we have.

We solved the first problemwith the argsmechanism, which provides a nested tuple collec-

tion of a constructor’s arguments. The second problem is an easy problem that only requires

us to repeat the C type of Coq values a given number of times. We solved the fourth problem
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with the ctor_reflectedmechanism, which allows us to recover the original constructor from

a constructor description. We only lack a solution for the third problem. To remedy that,

we can implement a function that takes a collection of arguments and invokes the memory

predicate for each argument.

This function would need to pattern-match on the reified description of a constructor

and the args collection that depends on that description, therefore it has to be dependently

typed. While it is possible to write functions with dependent pattern matching in pure Gal-

lina, likewe did for append_descs or result, we present this function definition using the Equa-

tions plugin [101] for easier understanding:

Equations in_graphs
(g : graph) (outliers : outlier_t)
(r : reified ctor_ann) (xs : args r) (ps : list rep_type) : Prop ᨼ=

in_graphs g outliers (@TYPEPARAM k) '(A; (H; xs)) ps ᨼ=
in_graphs g outliers (k A H) xs ps ;

in_graphs g outliers (@ARG _ _ _) _ [] ᨼ= False ;
in_graphs g outliers (@ARG A H k) '(a; xs) (p ᱰᲰ ps) ᨼ=
match is_erased H with
| no_placeholder => True
| _ => field_in_graph g outliers a p /\ in_graphs g outliers (k a) xs ps'
end ;

in_graphs g outliers (@RES _ _) _ ps ᨼ= ps = [].

Here this function traverses the args object. Type parameters of constructors are not rep-

resented in memory, therefore that case only has a recursive call. Arguments are only repre-

sented if they are not erased. The list of C representations we start with have to match the

arguments we have in the args object, violating this invariant means having False as a pre-

condition in the constructor specification. The result case specifies that there are no more C

representations passed as an argument.
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Now we have all the mechanisms we need to define the constructor specification for any

constructor description:

Definition alloc_make_spec_general (c : ctor_desc) : funspec ᨼ=
WITH gv : globals, g : graph, ps : list rep_type,

xs : args (ctor_reified c), roots : roots_t, sh : share,
ti : val, outlier : outlier_t, t_info : GCGraph.thread_info

PRE' (thread_info ᱰᲰ repeat int_or_ptr_type (ctor_arity c))
PROP (in_graphs g outlier (ctor_reified c) xs ps ;

Z.of_nat (ctor_arity c) < headroom t_info ;
writable_share sh)

(PARAMSx (ti ᱰᲰ map (rep_type_val g) ps)
(GLOBALSx [ gv ]
(SEPx [ full_gc g t_info roots outlier ti sh gv ])))

POST [ int_or_ptr_type ]
EX (p' : rep_type) (g' : graph) (t_info' : GCGraph.thread_info),

PROP (let r ᨼ= result (ctor_reified c) xs in
@is_in_graph r.1 (@field_in_graph r.1 r.2)

g' outlier (ctor_reflected c xs) p' ;
headroom t_info' = headroom t_info - Z.of_nat (S (ctor_arity c)) ;
gc_graph_iso g roots g' roots ;
ti_frames t_info = ti_frames t_info')

RETURN (rep_type_val g' p')
SEP (full_gc g' t_info' roots outlier ti sh gv).

In plain prose, here is what this specification says:

For any constructor description c, assume these preconditions hold for the
alloc_make_᱙Კ᳙ glue function for this constructor:

• This function takes the number of arguments specified as the arity in c, preceded
by an extra argument for the thread info, as seen in the PRE’ clause. The C repre-
sentations for these arguments are stored in the list ps.

• The C representations stored in ps represent the arguments of the constructor
stored in the args object in the CertiCoq heap graph g, as stated by the call to in_
graphs.

• There are enoughwordsofmemory (headroom) left in the thread infoobject t_info,
which contains all the runtime information we need. The necessary number of
words is one more than the constructor arity.
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• The entire graph g is represented as structs and pointers in theCprogram’smem-
ory, as stated by the separation logic part (SEP) of the precondition.

Assuming these preconditions, the following postconditions should hold for the
alloc_make_᱙Კ᳙ glue function for this constructor:

• This function returns a C representation p’, which represents the actual con-
structor value from the ctor_reflected applied to the arguments in the args ob-
ject. This value is represented in theCertiCoq heap graph according to themem-
ory predicate for the type this constructor returns.

• The number of words available (headroom) in the thread info object t_info’ has
decreased by onemore than the arity in c, compared to the old thread info object
t_info. The arity is for the arguments stored in memory and the additional one
is for the header.

• Anything reachable in the heap graph g before the function call is reachable after
the function call in graph g’.

• Pointers into the heap graph, that are local variables of C functions on the stack
that called this one, have not been changed in thememory of those frames, states
as the equality of the ti_frames fields of the thread info objects before and after
the function call.

• The new graph g’ is represented in the C programmemory, as stated by the sep-
aration logic part of the postcondition.

In this chapter, we described constructor descriptions, their generation, and generation of

specifications for glue functions based on the descriptions. We have proofs for these spec-

ifications as well but the proofs are currently not automatically generated. Further proof

engineering should make that an achievable goal since the required mechanisms are now in

place.
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7
Foreign Function Specifications

If he was forced to look at the light itself, wouldn’t it hurt his eyes?

Wouldn’t he turn away, and run back to the things he could see?

Plato, on the cave allegory [90]

When proving correctness of a Coq program that calls functions implemented in C and

proved correct in VST, the VST function specification (funspec)must be coherent with an ap-

propriate Coq functional model. In this chapter we show how to generate a coherent VST

funspec from a reified function description. Coherence on the Coq side is assured by reflec-

tion. Coherence on the C side is assured by a Coq proof using VST’s program logic. Co-

herence of the funspec generation could be proved, in principle, fromVST’s semanticmodel

and soundness proof, but that is beyond the scope of this thesis.

7.1 Foreign Function Descriptions

Similarly to howwe use reified descriptions towrite down (and eventually generate) descrip-

tions of constructors, we also want to use them to describe foreign functions.

Our foreign function interface allows not only foreign functions that use Coq inductive

types, but also user-defined foreign types, and foreign functions that use these foreign types.

In fact, a lot of the interesting caseswherewemightwant to use the foreign function interface

will involve some foreign types and some functions that construct, modify, or observe values
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of these foreign types, and some Coq inductive types.

The reifieddescriptionswe introduced inChapter 5 suit this purpose aswell. Since reified

descriptions allowus to annotate every component of a function type, we can define an anno-

tation type that contains additional information about the foreign types wemay need to use.

Then, the only remaining question is, what additional information is necessary for our pur-

poses? Tounderstand this questionbetter, weneed to familiarize ourselveswith theworkflow

of writing foreign types and foreign functions.

Auser of our systemwill define their foreign types and foreign functions as axioms inCoq,

preferably in a separate module. Here we define a type for 63-bit unsigned integers and some

function that use this type, which we will explain in more detail in Section 8.1:

Module C.
Axiom uint63 : Type.
Axiom from_nat : nat -> uint63.
Axiom to_nat : uint63 -> nat.
Axiom add : uint63 -> uint63 -> uint63.

End C.

These axioms are the foreign types and foreign functions that our client programswill use.

In order to reason about these types and functions we defined here, we want to describe the

relationship between these axioms and their functional models. Here we define amodel type

and some model functions for the axioms above:

Module FM.
Definition uint63 : Type ᨼ= {n : nat | n < (2 ^ 63)}.
Definition from_nat (n : nat) : uint63 ᨼ=
(n mod (2 ^ 63) ; ᱙Კ᳙).

Definition to_nat (x : uint63) : nat ᨼ=
let '(n; _) ᨼ= x in n.
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Definition add (x y : uint63) : uint63 ᨼ=
let '(n; _) ᨼ= x in
let '(m; _) ᨼ= y in
((n + m) mod (2 ^ 63) ; ᱙Კ᳙).

End FM.

Notice that these are also defined in a separate module, and the names of the functional

model definitions match the foreign type and foreign function names. The C module will

containCoq axioms for the foreign types, andCoq axioms for foreign functions thatmay use

these foreign types. These functions will be realized later by C functions through the FFI, as

we have seen in Chapter 3. The FM module, on the other hand, will contain the functional

model definitions. These definitions are written solely in Coq, and we can prove properties

about these definitions using the usual reasoning methods of Coq.

Whenwewrite a reified description of the foreign function C.from_nat, wewant to denote

that the types of C.uint63 and FM.uint63 are related to each other. The type of C.uint63 will

contain components that are foreign types, the type of FM.uint63will have the same type but

the foreign type components will be replaced with the functional model counterparts.

A reified description annotates every component of a type with an annotation type ann

: Type ᶙṖ Type. The annotation type is parametrized or indexed by a single type, as opposed

to two types at the same time. This still works for our purposes, but we have to consider

one of the types the primary one. We consider the functional model type to be the primary

type and the foreign function type to be the secondary type in our definitions, but there is

no fundamental reason for this choice, only convenience.

We need twomore definitions before we define the annotation type for foreign functions.

The first definition is a new type class, that allows us to express whichmodel type component

and which foreign type component are related:
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Class ForeignInGraph (model foreign : Type) : Type ᨼ=
model_in_graph : InGraph model.

This type class is helpful because we need to define an InGraph record for the functional

model type, which is represented as a plain Coq type, as opposed to the foreign type, which

is represented as a Coq axiom. This is because the InGraph record needs to be able to inspect

values of this type, and values of an axiomatized type will be uninspectable.

Defining InGraph record as an instance, however, creates a different problem: In the case

that the type used as a functionalmodel will be used in computation later for a different type,

wewould havemultiple InGraph instances for the same type, which breaks type class inference.

For example, in Section 8.2, we use the string type in Coq as the functional model type for

bytestrings. Bytestrings and naive Coq strings will have different memory representations,

even though they will both have InGraph instances indexed by the same type (up to normal-

ization). In order to get around this problem, we should avoid defining an InGraph instance

for the foreign case, and use a ForeignInGraph instance for such cases. Since the axiomatized

foreign type is not reused, this will rectify the type class inference for our system.

There is one missing piece in the larger puzzle of foreign function annotations: an iso-

morphism abstraction that allows us to express that the model type and the foreign type are

isomorphic to each other. We can use the common definition:

Class Isomorphism (A B : Type) : Type ᨼ=
{ from : A -> B
; to : B -> A
; from_to : forall (x : A), to (from x) = x
; to_from : forall (x : B), from (to x) = x
}.

85



Nowwe have all the pieces to define the annotation type:

Class foreign_ann (primary : Type) : Type ᨼ=
{ secondary : Type
; foreign_in_graph : ForeignInGraph primary secondary
; foreign_iso : Isomorphism primary secondary
}.

We intend this annotation type to be used in two different ways:

1. The first and easy way is for nonforeign types. If we want to use a type that is defined

in plain Coq, the primary and secondary type are the same, which means the isomor-

phism between them is trivial. We define a function transparent to make it easier to

generate this annotation:

Definition transparent {A : Type} `{IG_A : InGraph A} : foreign_ann A ᨼ=
{| secondary ᨼ= A
; foreign_in_graph ᨼ= IG_A
; foreign_iso ᨼ= Isomorphism_refl
|}.

2. The second way is for foreign types. In this case, the primary type is the functional

model type, and the secondary type will be the foreign type. We will have an InGraph

record for the functional model type. This goes against usual type class usage, where

there is only one instance expected for a given type. The InGraph record has to be

parametrized by the functional model instead of the foreign type because the graph_

predicate function taking the functional model type as an input allows us to specify

how different foreign values are represented in memory. (We will see examples of this

in Chapter 8.) We define a function opaque to make it easier to generate this kind of

annotation:
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Definition opaque {A B : Type} `{IG_A : ForeignInGraph A B}
`{Iso : Isomorphism A B} : foreign_ann A ᨼ=

{| secondary ᨼ= B
; foreign_in_graph ᨼ= IG_A
; foreign_iso ᨼ= Iso
|}.

BogusAnnotations At the endofChapter 5,wediscussedhow thenestedhigher-order

abstract syntax style of our descriptions can require bogus annotationswhen the annotations

cannot be obtained somewhere else. Here, we define a bogus foreign_ann annotation foreign_

ann_any, where the memory representation predicate requires proving False, hence is impos-

sible to prove:

Definition GraphPredicate_any {A : Type} : GraphPredicate A ᨼ=
{| graph_predicate g outliers x p ᨼ= False |}.

Definition InGraph_any {A : Type} : InGraph A.
Proof. ᱙Კ᳙ Defined.

Definition foreign_ann_any {A : Type} : foreign_ann A ᨼ=
@transparent A InGraph_any.

This annotation is not defined as an instance sincewe do notwantCoq’s type class resolution

system to select it by default, but it is a useful annotation when we want to traverse reified

data structures easily, and we will utilize it in the next section.

7.2 Consuming Foreign Function Descriptions

Since the annotation type foreign_ann contains both the type of the functional model, which

is the primary type, and the type of the foreign function, which is the secondary type, we can

traverse the reified annotation and reproduce the function types of the foreign function and
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its functional model. Suppose we have a reified description for from_nat from earlier in this

chapter:

Definition from_nat_reified : reified foreign_ann ᨼ=
@ARG _ nat (@transparent _ InGraph_nat) (fun _ =>
(@RES _ FM.uint63 (@opaque FM.uint63 C.uint63 ForeignInGraph_uint63 Iso_uint63))).

Notice that this description prioritizes the functional model type, as the components of it

are passed to ARG and RES, while the components of the foreign function type are passed only

to the annotation.

Now, we want to have two functions, to_model_fn_type and to_foreign_fn_type, that use

the reified description with annotated by foreign_ann, to compute the type of the functional

model function and the foreign function, like this:

Compute (to_model_fn_type from_nat_reified).

.

nat -> FM.uint63 : Type

Compute (to_foreign_fn_type from_nat_reified).

.

nat -> C.uint63 : Type

Notice how the former computes a type that matches FM.from_nat’s, and the latter com-

putes a type that matches C.from_nat’s.

These functions can be defined as traversals of reified descriptions, even though they need

bogus annotations to go all thewaydown thedescription. The to_model_fn_type function that

computes the functionalmodel type is easier, since the reifieddescriptionprimarily describes

the functional model type:
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Fixpoint to_model_fn_type (r : reified foreign_ann) : Type ᨼ=
match r with
| TYPEPARAM k =>

forall (A : Type), to_model_fn_type (k A foreign_ann_any)
| ARG primary ann k =>

forall (p : primary), to_model_fn_type (k p)
| RES primary ann => primary
end.

The to_foreign_fn_type function that computes the foreign function type is a bit trickier:

Fixpoint to_foreign_fn_type (r : reified foreign_ann) : Type ᨼ=
match r with
| TYPEPARAM k =>

forall (A : Type), to_foreign_fn_type (k A foreign_ann_any)
| ARG primary ann k =>

forall (m : secondary),
to_foreign_fn_type (k (@to primary secondary foreign_iso m))

| RES _ ann => secondary
end.

In the ARG case, the primary argument is the functional model component type, and k ex-

pects a value of type primary. When we compute the foreign function type, however, we

quantify over the secondary type. Therefore, we have to call to in the isomorphism between

the primary and secondary types. Through this call, we obtain a value of the type primary,

and are able to continue with recursion.

Now that we can compute the type of the foreign function from the reified description,

we can put the description and the actual functions in the same dependently-typed record:
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Record fn_desc ᨼ=
{ fn_type_reified : reified foreign_ann
; foreign_fn : to_foreign_fn_type fn_type_reified
; model_fn : reflect fn_type_reified
; fn_arity : nat
; c_name : string
}.

The function description record contains:

• the reified description of the function, namely fn_type_reified,

• the actual foreign function, namely foreign_fn,

• the actual (but uncurried) foreign function, namely model_fn,

• the arity of the function, namely fn_arity,

• and the name of the foreign function in C, namely c_name.

Currying the Uncurried Given that we defined to_model_fn_type and to_foreign_fn_

type before, we should explain why we did not use to_model_fn_type here, which would have

allowed us to pass the actual foreign function into this record. Instead, we used the reflect

function to obtain the uncurried version of the functional model type described in fn_type_

reified. This was a design decision to make the VST specification generation easier13. Also,

we can still compute the curried function from the reified description and a function that

has the reflected type of that description:
13WITH clause of VST funspecs is more pleasant to work with when the parameters in the clause are not de-

pendent on each other. Uncurrying packs all the arguments into one nested tuple (thanks to args), which no
other parameter in the WITH clause depends on.
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Equations curry_model_fn
(r : reified foreign_ann) (mt : reflect r) : to_model_fn_type r ᨼ=

curry_model_fn (TYPEPARAM k) mt ᨼ=
fun (A : Type) => curry_model_fn (k A foreign_ann_any)

(fun xs => mt (A; (foreign_ann_any; xs))) ;
curry_model_fn (ARG A H k) mt ᨼ=
fun (a : A) => curry_model_fn (k a) (fun xs => mt (a; xs)) ;

curry_model_fn (RES A H) mt ᨼ= mt tt.

Understanding this function is not important for this chapter, but it is interesting from

a metaprogramming perspective, so we should explain the intuition behind this function:

The function traverses the reified description to construct a new functionalmodel function,

effectively re-currying the uncurried reflected function mt. It recreates the curried version

by creating a Coq lambda term for type parameters and arguments, in which the recursive

call carries the remaining reflected value. At every step, we apply the arguments we have

seen so far to the reflected value. However, since we need to recreate the nested tuple of all

arguments, we add the seen arguments to the args object xs, which allows us to create the

required nested tuple within the lambda.

Now with this function, it is almost as if we had a field with the functional model type of

the foreign function, because we can obtain it with a mere function call in plain Coq:

Definition curried_model_fn (d : fn_desc) : to_model_fn_type (fn_type_reified d) ᨼ=
curry_model_fn (fn_type_reified d) (model_fn d).

This example once again demonstrates the usefulness of our reified description mecha-

nism, since it isolates the metaprogramming to the creation of the description.
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7.3 Generation of Foreign Function Descriptions

The mechanisms we outlined regarding the generation of constructor descriptions (in Sec-

tion 6.2) apply to the generation of foreign function descriptions. This time we do not have

to traverse the inductive type descriptions we obtain fromMetaCoq, we only have to traverse

the functional model and foreign function types. There are no new techniques involved in

this generation; wemerely traverse two types at the same time, as opposed to the one type we

traversed for constructor descriptions in Section 6.2.

7.4 Generation of Specifications for Foreign Functions

Generating VST specifications for foreign functions is very similar to howwe generated VST

specifications for constructor glue functions in Section 6.3. There we generated specifica-

tions using reified descriptions with ctor_ann annotations; now we will use reified descrip-

tions with foreign_ann annotations.

To understand what we are generating, it might be helpful to see an example foreign func-

tion and howwewould write its VST specification by hand. Our running example, from_nat,

is a good candidate. Its specialized VST specification would look like this:

Definition from_nat_spec : ident * funspec ᨼ=
DECLARE _from_nat
WITH gv : globals, g : graph, n_p : rep_type,

n : nat, roots : roots_t, sh : share,
ti : val, outlier : outlier_t, t_info : GCGraph.thread_info

PRE [[ [ thread_info ; int_or_ptr_type ] ]]
PROP (is_in_graph g outlier n n_p ;

writable_share sh)
PARAMS (ti ; rep_type_val g x_p ; rep_type_val g xs_p)
GLOBALS (gv)
SEP (full_gc g t_info roots outlier ti sh gv)
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POST [ int_or_ptr_type ]
EX (p' : rep_type) (g' : graph) (t_info' : GCGraph.thread_info),

PROP (is_in_graph g' outlier (FM.from_natn) p' ;
gc_graph_iso g roots g' roots)

RETURN (rep_type_val g' p')
SEP (full_gc g' t_info' roots outlier ti sh gv).

Following the example of the previous chapter, let us write down what this specification

says in plain prose:

Assume these preconditions hold for the C function backing C.from_nat:

• This function takes two arguments (PARAMS), one for the thread info and one for
the Coq value, whose C representation can be recovered from n_p

• The first value n_p represents the natural number, n : nat, in the CertiCoq heap
graph, as stated by is_in_graph g outlier n n_p in the propositional part (PROP) of
the precondition (PRE).

• The entire graph g is represented as structs and pointers in theCprogram’smem-
ory, as stated by the separation logic part (SEP) of the precondition.

Assuming these preconditions, the following postconditions should hold for the C
function backing C.from_nat:

• This function returns aC representation p’, which represents the value FM.from_nat n
in the CertiCoq heap graph.

• Anything reachable in the heap graph g before the function call is reachable after
the function call in graph g’.

• The new graph g’ is represented in the C programmemory, as stated by the sep-
aration logic part of the postcondition.

The next stepwe have to take is to generalize this specification to any foreign functionwith

a fn_desc. To achieve this generalization, we have to

1. quantify over all arguments of the foreign function, and their C representations,

2. generate the C function type based on the foreign function arity,
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3. specify in the precondition that all arguments of the foreign function are represented

by the correspondingC representation, according toourmemory representationpred-

icates,

4. specify in the postcondition that the function result is aC representationof the correct

Coq value, related to the functional model we want with the arguments we have.

We have solved all of these problems in Section 6.3. Therefore, we follow the same solu-

tions or adapt the solutions described there (such as the annotation type of in_graphs) towork

for this case. With these solutions, we can now define the foreign function specification for

any foreign function description:

Definition fn_desc_to_funspec (f : fn_desc) : ident * funspec ᨼ=
DECLARE (ident_of_string (c_name d))
WITH gv : globals, g : graph, roots : GCGraph.roots_t, sh : share,

xs : args (fn_type_reified d), ps : list rep_type, ti : val,
outlier : GCGraph.outlier_t, t_info : GCGraph.thread_info

PRE' (thread_info ᱰᲰ repeat int_or_ptr_type (fn_arity d))
PROP (writable_share sh ;

in_graphs g outlier (fn_type_reified d) xs ps)
(PARAMSx (ti ᱰᲰ map (rep_type_val g) ps)
(GLOBALSx [ gv ]
(SEPx [ full_gc g t_info roots outlier ti sh gv ; library.mem_mgr gv ] )))

POST [ int_or_ptr_type ]
EX (p' : rep_type) (g' : graph)

(roots': GCGraph.roots_t) (t_info' : GCGraph.thread_info),
PROP (let r ᨼ= result (fn_type_reified d) xs in

@is_in_graph r.1 (@foreign_in_graph r.1 r.2)
g' outlier (model_fn d xs) p' ;

gc_graph_iso g roots g' roots')
RETURN (rep_type_val g' p')
SEP (full_gc g' t_info' roots' outlier ti sh gv ; library.mem_mgr gv).
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Following the previous examples, let us explain what this specification says in plain prose:

Assume these preconditions hold for the foreign function described by d:

• This function takes the number of arguments specified as the arity in d, preceded
by an extra argument for the thread info, as seen in the PRE’ clause. The C repre-
sentations for these arguments are stored in the list ps.

• The C representations stored in ps represent the arguments to the foreign func-
tion stored in the args object, either in the CertiCoq heap graph g or the outlier
set, as stated by the call to in_graphs.

• The entire graph g is represented as structs and pointers in theCprogram’smem-
ory, as stated by the separation logic part (SEP) of the precondition.

Assuming these preconditions, the following postconditions should hold for the for-
eign function described by d:

• This function returns a C representation p’, which represents the return value
of the functional model when it is called with all the arguments. This represen-
tation is according to the possible foreign type representation of the return type.

• Anything reachable in the heap graph g before the function call is reachable after
the function call in graph g’.

• The new graph g’ is represented in the C programmemory, as stated by the sep-
aration logic part of the postcondition.

The proofs of these specifications are the work of Stark and Appel and therefore are out

of the scope of this dissertation. They are covered in the tech report by Korkut, Stark, and

Appel [59].

7.5 Rewriting Foreign Function Calls

In Coq, proofs about programs are often written by unfolding definitions and reducing the

resulting terms. However, our FFI workflow requires users to declare all foreign types and

foreign functions as axioms. Since axioms cannot be unfolded, writing proofs about a pro-

gram that includes references to these axioms becomes very difficult.
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Although these axioms are realized when the compiled program is linked to the foreign

functions on theC side, proofs about this programare checkedbefore compilation and there-

fore are unavailable at this stage. Without a solution to this problem, users of our FFI cannot

prove properties about foreign types and foreign functions.

Our solution to this problem is to introduce a mechanism in which occurrences of these

foreign types and foreign functions can be rewritten into their functional models. Since the

annotation type foreign_ann includes a field that defines and proves an Isomorphism between

the components of the foreign function type and the functional model type, we can use this

isomorphism to generate an equality between these two types. We will then assume these

equalities and use them to rewrite the foreign parts into their familiar functional models.14

Now let us define a function that relates the foreign function and its functional model:

We define a function model_spec_aux that traverses the reified description r, the foreign

function type pt, and the functional model type mt at the same time, and generates a type

that expresses the equality we described earlier:

Equations model_spec_aux
(r : reified foreign_ann)
(pt : to_foreign_fn_type r)
(mt : to_model_fn_type r) : Prop ᨼ=

model_spec_aux (@TYPEPARAM k) pt mt ᨼ=
forall (A : Type), model_spec_aux (k A foreign_ann_any) (pt A) (mt A) ;

model_spec_aux (@ARG primary ann k) pt mt ᨼ=
forall (x : secondary),
model_spec_aux (k (to x)) (pt x) (mt (to x)) ;

model_spec_aux (@RES primary ann) pt mt ᨼ=
pt = (@from _ _ foreign_iso mt).

14For the sake of comparison, the functional model is like the shadow of the real objects outside of the cave,
hence the epigraph from Plato at the beginning of this chapter.
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For easier use, we define another function model_spec that uses a fn_desc to generate the

same type:

Definition model_spec (d : fn_desc) : Prop ᨼ=
model_spec_aux (fn_type_reified d) (foreign_fn d) (curried_model_fn d).

This function generates a type that quantifies over all the arguments of the foreign func-

tion, and asserts that these two functions give the same result for the same inputs, up to the

isomorphisms in each annotation.

In order to demonstrate exactly what model_spec generates, let us extend the examples we

used earlier in this chapter. Here are the foreign function descriptions for those examples:

Definition from_nat_desc : fn_desc ᨼ=
{| fn_type_reified ᨼ=

@ARG _ nat transparent (fun _ =>
@RES _ FM.uint63 opaque)

; foreign_fn ᨼ= C.from_nat
; model_fn ᨼ= fun '(x; tt) => FM.from_nat x
; fn_arity ᨼ= 1
; c_name ᨼ= "int63_from_nat"
|}.

Definition to_nat_desc : fn_desc ᨼ=
{| fn_type_reified ᨼ=

@ARG _ FM.uint63 opaque (fun _ =>
@RES _ nat transparent)

; foreign_fn ᨼ= C.to_nat
; model_fn ᨼ= fun '(x; tt) => FM.to_nat x
; fn_arity ᨼ= 1
; c_name ᨼ= "int63_to_nat"
|}.
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Definition add_desc : fn_desc ᨼ=
{| fn_type_reified ᨼ=

@ARG _ FM.uint63 opaque (fun _ =>
@ARG _ FM.uint63 opaque (fun _ =>
@RES _ FM.uint63 opaque))

; foreign_fn ᨼ= C.add
; model_fn ᨼ= fun '(x; (y; tt)) => FM.add x y
; fn_arity ᨼ= 2
; c_name ᨼ= "int63_add"
|}.

The results of calls to model_specwith those descriptions will help illustrate how model_spec

can be used:

Eval cbn in (model_spec from_nat_desc).

.

forall x : nat,
C.from_nat x = to (FM.from_nat x)
: Prop

Eval cbn in (model_spec to_nat_desc).

.

forall x : C.t,
C.to_nat x = FM.to_nat (from x)
: Prop

Eval cbn in (model_spec add_desc).

.

forall x y : C.t,
C.add x y = to (FM.add (from x) (from y))
: Prop
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We must make it clear here that the types model_spec returns are currently not provable

within our framework. In order to use these equalities, the user would have to treat them as

preconditions. One possible way to do so is this:

Section UIntProofs.
Variable from_nat_spec : model_spec from_nat_desc.
Variable to_nat_spec : model_spec to_nat_desc.
Variable add_spec : model_spec add_desc.
᱙Კ᳙

End UIntProofs.

Thiswaywe canpresume these equalities generatedby model_speconly for the proofs about

programs using foreign functions and foreign types. Within those proofs, however, we can

rewrite calls to those foreign functions into calls to the functions from the functional model,

which increases our capability of writing programs that both use the FFI and take advantage

of dependent types.
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8
Examples

Men become builders by building and lyre players by playing the lyre...

Aristotle [14]

In this chapter, we will investigate examples uses of the foreign function interface, and

explore how we can write functional models, specifications, and proofs about them. This

chapter will not feature the VST specifications and proofs for the C function in this chap-

ter, as the VST funspecs will be automatically generated using the methods we described in

Section 7.4, while the VST proofs are outside of the scope of this dissertation.

8.1 Unsigned Integers

In this section, we will implement 63-bit unsigned integers as a foreign type and functions to

convert from/to the natural number type, and to add unsigned integers as foreign functions.

The VST proofs for these functions are written by Stark and Appel, and are covered in the

tech report by Korkut, Stark, and Appel [59].

8.1.1 The Coq Interface

In Section 7.1, we had defined primitive integers as an example for reified descriptions. Our

implementation here will follow that example.
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The idealway to organize amodule that uses foreign types and foreign functions, ismodule

types. By providing a collection of types and functions on those types, we can define our

foreign types as abstract data types [66]. Later we can provide different implementations of

this abstract data type; the foreign implementation and the functional model are just two of

such implementations.

The module type for unsigned 63-bit integers can be defined as such:

Module Type UInt63.
Parameter uint63 : Type.
Parameter from_nat : nat -> uint63.
Parameter to_nat : uint63 -> nat.
Parameter add : uint63 -> uint63 -> uint63.

End UInt63.

The foreign implementation in C is computationally opaque from the Coq side. All the

foreign types and foreign functions are defined as Axioms in Coq:15

Module C : UInt63.
Axiom uint63 : Type.
Axiom from_nat : nat -> uint63.
Axiom to_nat : uint63 -> nat.
Axiom add : uint63 -> uint63 -> uint63.

End C.

The foreign functions have to bemapped to their C function names, along with the infor-

mationofwhether theC function to implement a foreign functionneeds touse the thread_info.

The system also needs a C header file of the foreign functions, which will be included in the

compiled code.

15Although itmight be nicer to define the entire Cmodule as a single axiomofmodule type UInt63, we cannot
do so because of a limitation in CertiCoq’s treatment of (external) primitive values as free variables.
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CertiCoq Register
[ C.from_nat => "uint63_from_nat"
, C.to_nat => "uint63_to_nat" with tinfo
, C.add => "uint63_add"
] Include [ "prims.h" ].

If a C function merely inspects Coq values and doesn’t need to create any boxed Coq

values, then thread_info argument is unnecessary. In these examples, C.from_nat inspects and

traverses a possibly boxed Coq value, but creates an unboxed Coq value. C.to_nat inspects

an unboxed Coq value, and creates a possibly boxed Coq value. C.add inspects unboxed Coq

values and creates an unboxed Coq value.

8.1.2 The C Implementation

Since the glue functions that discriminateCoq values (such as get_Coq_Init_Datatypes_nat_tag

return an int value, we can define aC enum tomake the correspondence between a constructor

and its tag clearer. Here, we use the constructor names and order from the original Coq

definition of nats to define such an enum:

typedef enum { O, S } nat;

We can now define a foreign function uint63_from_nat that traverses a Coq nat value and

creates a value of the foreign type for unsigned integers. (Recall that a nat value is a chain of

boxed S constructors in memory.)

value uint63_from_nat (value n) {
value temp = n;
uint64_t i = 0;

while (get_Coq_Init_Datatypes_nat_tag(temp) == S) {
iṸṻ;
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temp = get_args(temp)[0];
}
return (value) ((i << 1) + 1);

}

The uint63_from_nat function keeps a variable (temp) for the remaining Coq nat value, and

another variable (i) for the intermediate result. The function keeps trying to increase i until

there are no more successors (S) left in the nat value.

Thememory representation of unsigned integers will be unboxed. In a 64-bit word, we set

the last bit to 1 to mark that this value is unboxed. We use the remaining 63 bits for the inte-

ger itself. This commonly used [67, 22] trick eliminates the pointer indirection andmemory

allocation and header requirements of boxed values at the cost of one bit16. In foreign func-

tions dealing with 63-bit integers, we will see a lot of bit shifting to convert back and forth

from this representation.

Implementing uint63_to_nat function is less straightforward. For a given integern, we have

to allocate memory for S, the successor constructor, n times:

value uint63_to_nat (struct thread_info *tinfo, value t) {
uint64_t i = ((uint64) t) >> ((uint64_t) 1);
value temp = make_Coq_Init_Datatypes_nat_O();
while (i) {
if (tinfo->limit - tinfo->alloc < 2) {
value roots[1] = {temp};
struct stack_frame fr = {roots + 1, roots, tinfo->fp};
tinfo->fp = &fr;
tinfo->nalloc = 2;
garbage_collect(tinfo);
temp = roots[0];
tinfo->fp = fr.prev;

16If a user needs that one bit, they could also implement 64-bit integers in this systemwith a boxed represen-
tation.

103



}
temp = alloc_make_Coq_Init_Datatypes_nat_S(tinfo, temp);
i--;

}
return temp;

}

To convert a 63-bit integer into a Coq nat, we have to discard the last bit of the integer and

loop over the remaining number. As long as the number is greater than 0, we keep building

new successor values, using the glue function alloc_make_Coq_Init_Datatypes_nat_S. However,

glue functions that build Coq values do not check if there is enough space in the CertiCoq

heap beforehand; that is assumed as a precondition of these glue functions. Checking if there

is enough space and calling the garbage collector if necessary is left to the programmer. This

is a deliberate choice that allows the programmer to decide when to do this; the programmer

may decide to check at every step for each constructor, or to precalculate how much space

will be needed and check if that is available at once.

In this particular function, we choose to check if there is enough space every time wewant

to allocate an S value. We call the garbage collector if there is not enough space left in the

CertiCoq heap, but we have tomake sure temp, our temporary Coq nat value is not discarded

in this process. We achieve that by declaring temp a root of the heap; we push a frame on the

stack of frames and copy temp into that frame. After the collection, we copy back the (possibly

forwarded) temp, pop the stack, and then we can call the glue function tomake a Coq S value,

since we now know that we have enough space in the CertiCoq heap.

A curious reader might wonder why we chose to check if there is enough space inside the

loop instead of outside the loop. Precalculating the necessary space and checking once for

the entire result would seem like a reasonable optimization. However, the garbage collector
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attempts to guarantee that the nursery (generation 0 in a generational garbage collector) has

at least tinfoᶙṖnalloc available slots. If the spaceweneed is larger than thenursery size, garbage

collection will fail.17

Macros toHelpwithMemoryChecks It can be tedious to write, in every function

that allocates constructors, the code that checks if there is enough space, saves intermediate

values in a stack frame, and calls the garbage collector. We hide that repetition behind C

macros. We introduce BEGINFRAME, GC_SAVEk, and ENDFRAME. BEGINFRAME takes k, the number of

values that will be saved, as an argument. GC_SAVEk takes the number of available slots in

the CertiCoq heap we need. ENDFRAMEmerely closes delimiters opened by BEGINFRAME. We also

introduce a macro LIVEPOINTERSk that we can wrap around function calls that might possibly

include memory checks and garbage collector calls.

With these macros, we can define the uint63_to_nat function in a simpler way:

value uint63_to_nat(struct thread_info *tinfo, value t) {
uint64_t i = (uint64_t) (((uint64_t) t) >> 1);
value save0 = make_Coq_Init_Datatypes_nat_O();
BEGINFRAME(tinfo, 1)
while (i) {
GC_SAVE1(2)
save0 = alloc_make_Coq_Init_Datatypes_nat_S(tinfo, save0);
i--;

}
return save0;
ENDFRAME

}

17We could, of course, check the nursery size and set tinfoᶙṖnalloc accordingly, as few times as possible.
However, that is a more complicated implementation and VST proof.
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Finally, we can also implement uint63_add, which adds two 63-bit unsigned integers:

value uint63_add(value x, value y) {
return (value) ((((((uint64_t) x) >> 1) + (((uint64_t) y) >> 1)) << 1) + 1);

}

This function first converts the values into 64-bit C integers by discarding the last bit,

followed by the addition, after which the result is converted back to the old representation

by the last bit being set to 1.

That concludes the C implementation of 63-bit unsigned integers. Along with the Coq

interface, this part suffices for the operational use of VeriFFI. The next subsection is only

relevant for users who want to prove properties about their foreign functions.

8.1.3 The FunctionalModel

The Verified Software Toolchain [13, 12] allows the user to prove that a C function imple-

ments a functional model, that is, a mathematical model of the C function we want to prove

correct. Coq is merely the language in which we express mathematics.

VST does not impose any requirements about the type of the functional model. As long

as the arguments are quantified in the resulting VST function specification, theC type of the

C function and the Coq type of the functional model do not need to line up exactly. (The

VST user provides a representation relation characterizing the correspondence.) Our recipe

for verifying foreign functions will be stricter; we wish both the C side and the functional

model to be compatible with the same Module Type, namely UInt63 in this case.

FM, the module that contains the functional model, is simply a module that implements18

the same Module Type as C, the module that contains the axiomatized references to the foreign
18Weuse <ᨼ instead of :whenwe ascribe themodule type to themodule, since we want the definitions in the

module to be transparent to the outside. This allows us to write proofs about the functional model later.
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functions. For a meaningful mathematical model of foreign types and foreign functions, the

FMmodule should consist of concrete definitions in plain Coq:

Module FM <ᨼ UInt63.
Definition uint63 : Type ᨼ= {n : nat | n < (2 ^ 63)}.

Lemma mod63_ok: forall (n : nat), (n mod (2 ^ 63)) < (2 ^ 63).
Proof. intro. apply Nat.mod_upper_bound, Nat.pow_nonzero. auto. Qed.

Definition from_nat (n : nat) : uint63 ᨼ=
(Nat.modulo n (2 ^ 63); mod63_ok _).

Definition to_nat (i : uint63) : nat ᨼ=
let '(n; _) ᨼ= i in n.

Definition add (x y : uint63) : uint63 ᨼ=
let '(xn; x_pf) ᨼ= x in
let '(yn; y_pf) ᨼ= y in
let n ᨼ= (xn + yn) mod (2 ^ 63) in
(n; mod63_ok _).

End FM.

Machine integers are bounded, therefore we have to model the lower and upper bounds

of integers. For unsigned 63-bit integers, the bounds are [0, 263). The nat type has a lower

bound of 0 by construction, therefore we only have to model the upper bound, which we

do using the Σ-type to express (constructive) existential quantification, as seen above in the

definition of FM.uint63, the functional model of our foreign type.

We define the FM.from_nat, using the modulo operation to model integer overflow. Sim-

ilarly, FM.to_nat unpacks the existential value and returns it. Finally, FM.add unpacks both

inputs, adds the nats and takes the modulo of the sum.

We use the lemma mod63_ok, which ensures that the modulo of a number with our upper

bound is less than our upper bound, to satisfy the propositional part of the existential.
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8.1.4 Model Proofs for Foreign Functions

We now have two implementations of unsigned 63-bit integers: The first one lives in the C

module; it looks like axioms on the Coq side but when compiled to C, it is backed by foreign

functions in C. The second one lives in the FMmodule; it is a functional model that is imple-

mented in plain Coq. The first one is meant to be executed, while the second one is meant

to be used in proofs. In Section 7.5, we set up the mechanisms for us to freely rewrite calls to

the functions in C to calls to the functions in FM. With these rewrites, we can prove theorem

statements that involve the functions in C.

Section UInt63Proofs.

We can start by opening a new Section, which allows us to assume equalities and isomor-

phisms without having to make them into actual Coq axioms.

Declare Instance Isomorphism_uint63 : Isomorphism FM.uint63 C.uint63.

We assume there is an isomorphism between the foreign type and its functional model.

(Wewill later justify this assumption by instantiating C.uint63 ᨼ= FM.uint63; here the isomor-

phism is just to prevent the user from breaking the abstraction.) A foreign value and the

mathematical object that models that foreign value are not same entity, but this (construc-

tive) isomorphismmakes it is possible to convert between them.

Instance GraphPredicate_uint63 : GraphPredicate FM.uint63 ᨼ=
{| graph_predicate (g : graph) (o : outlier_t) (x : FM.uint63) (p : rep_type) ᨼ=

let '(n; _) ᨼ= x in
match p with
| repZ i => i = Z.of_nat n
| _ => False
end |}.
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Instance ForeignInGraph_uint63 : ForeignInGraph FM.uint63.
Proof. ᱙Კ᳙ Qed.

We define GraphPredicate and ForeignInGraph instances for the foreign type and its func-

tional model. Notice that the graph_predicate definition takes the functional model value as

an input, as the foreign type in the C module is completely opaque, therefore values of that

type cannot be inspected in plainCoq. This predicate expresses that the integer is represented

as an unboxed vertex (repZ) in the CertiCoq heap graph.

(* After generating from_nat_desc, to_nat_desc, and add_desc. *)
Variable from_nat_spec : model_spec from_nat_desc.
Variable to_nat_spec : model_spec to_nat_desc.
Variable add_spec : model_spec add_desc.

Nowwe get to use themechanisms in Section 7.4 to generate descriptions of foreign func-

tions, and from them, using model_spec mechanism from Section 7.5, we can generate the

equalities we will use to rewrite functions in the C module to their counterparts in the FM

module.

Theorem add_assoc : forall (x y z : nat),
C.to_nat (C.add (C.from_nat x) (C.add (C.from_nat y) (C.from_nat z))) =
C.to_nat (C.add (C.add (C.from_nat x) (C.from_nat y)) (C.from_nat z)).

Proof.
intros x y z.
props to_nat_spec.
props add_spec.
props from_nat_spec.
foreign_rewrites.
(* The rest is just a proof about the functional model! *)
unfold FM.add, FM.from_nat, FM.to_nat.
unfold proj1_sig.
rewrite <- !(Nat.Div0.add_mod y z).
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rewrite <- !(Nat.Div0.add_mod x y).
rewrite <- !(Nat.Div0.add_mod).
f_equal.
apply Nat.add_assoc.
all: apply Nat.pow_nonzero; auto.

Qed.

End UInt63Proofs.

Using these assumptions, we are now able to prove the associativity of 63-bit unsigned

machine integers in our system. The first half of our proof consists of rewrites based on the

model_spec assumptions. After those rewrites, the proof goal looks like this:

1 goal

x, y, z : nat
ṢṥṥṣṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤṤ
FM.to_nat (FM.add (FM.from_nat x)

(FM.add (FM.from_nat y) (FM.from_nat z))) =
FM.to_nat (FM.add (FM.add (FM.from_nat x) (FM.from_nat y))

(FM.from_nat z))

At this point in the proof, we can proceed as if the proof is only about the functional

model, as in can be seen in the second half of add_assoc.

8.2 Bytestrings

The Coq string type is defined as a linked list of ascii, each of which is record of 8 bools:

Inductive ascii ᨼ=
| Ascii : bool -> bool -> bool -> bool -> bool -> bool -> bool -> bool -> ascii.

Inductive string ᨼ=
| EmptyString : string
| String : ascii -> string -> string.
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As we have seen in Section 4.1, each String constructor is represented as three words (a

header and two pointers), and each Ascii constructor is nine words, in which each bool is

unboxed. This means when a value of the Coq type string is compiled to C, our system uses

96 bytes (on a 64-bit system) per ASCII character, which clearly is inefficient. Instead, we

can introduce a foreign type for bytestrings, where each character would occupy one byte

(as they do in OCaml [67, Chapter 23, “string values”]), and provide foreign functions to

convert between this foreign type and the Coq strings, and operations on this foreign type.

In this section, we implement such a foreign type and its foreign functions. The VST

proofs for these functions are written by Stark and Appel, and are covered in the tech report

by Korkut, Stark, and Appel [59].

8.2.1 The Coq Interface

We start by defining a Module Type, Bytestring, that contains the foreign types and foreign

functions we need to implement bytestrings.

Module Type Bytestring.
Parameter bytestring : Type.
Parameter pack : string -> bytestring.
Parameter unpack : bytestring -> string.
Parameter append : bytestring -> bytestring -> bytestring.

End Bytestring.

We proceed by defining a module, C that satisfies the Bytestring interface. This module

states that all values in the Bytestring interface will be foreign types and foreign functions.
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Module C : Bytestring.
Axiom bytestring : Type.
Axiom pack : string -> bytestring.
Axiom unpack : bytestring -> string.
Axiom append : bytestring -> bytestring -> bytestring.

End C.

We have to register with CertiCoq the foreign functions and the names of C functions

that will realize those foreign functions when a client program is compiled to C.

CertiCoq Register
[ C.pack => "pack" with tinfo,
, C.unpack => "unpack" with tinfo,
, C.append => "append" with tinfo,
] Include [ "prims.h" ].

8.2.2 The C Implementation

For brevity, let us explain only the C implementation of the C.pack function out of these

foreign functions. This function converts a Coq string into our foreign type C.bytestring.

To understand how this function would be implemented in C, we have to grasp thememory

representations of these types.

Wehave alreadydiscussed thememory representationof the string type, as it is just another

inductive type. Once we add string to the list of types to generate glue code about, we will

have the string counterparts of all the helper functions we went over in Section 3.2.

The memory representation of C.bytestring will be more complicated. For further com-

patibility with the OCaml ecosystem, we use the same bytestring representation as OCaml.

We would have the following memory representation (in a 64-bit setting) for the bytestring

"interface":
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00000000 00000000 00000000 00000000 00000000 00000000 00001000 11111100

01101001 01101110 01110100 01100101 01110010 01100110 01100001 01100011

bits for the garbage collector ordinal bits: 252size bits: 2 words

01100101 00000000 00000000 00000000 00000000 00000000 00000000 00000110

the ASCII characters for the string "interface" padding: 6

Figure 8.1: The representation of the bytestring "interface" in memory.

This string’s representation consists of 3 words, one for the header and the remaining two

for the characters and padding. After the header, we use one byte per ASCII character, ter-

minated by a null byte. However, our runtime system assumes that values consist of words

in memory, and our number of character bytes might not line up with the word size. We

alleviate this discrepancy by filling the remaining bytes in the word with a padding. This

padding consists of null bytes, with the last byte containing howmany extra null bytes had to

be added. If the characters and the terminating null byte perfectly fit in words, the last byte is

a null byte, which serves both as the terminating byte and also the number of extra null bytes

that had to be added.

The header contains the size of the string content, which is 2 words in this example. The

last part of the header contains the number 252, which is a special tag for bytestrings in

OCaml. This tag indicates that none of the words in the record are pointers—none should

be traversed by the garbage collector—so they don’t need to use the last bit of each word to

distinguish pointers from integers.

Finally, just as it is the case for all other values in our memory representation, the header is

one word behind where the pointer points to.
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Now that we understand how bytestrings are supposed to be represented in memory, we

can start the C implementation. We can start with defining an enum for the possible construc-

tors of the Coq type string:

typedef enum { EMPTYSTRING, STRING } string;

Here is what the implementation for C.pack looks like:

value pack(struct thread_info *tinfo, value save0) {
BEGINFRAME(tinfo, 1)

ᲆ᳆ Allocate enough memory
value temp = save0;
size_t i, len = 0;
while (get_Coq_Strings_String_string_tag(temp) == STRING) {
len++;
temp = get_args(temp)[1];

}
size_t mod = len % sizeof(value);
size_t pad_length = sizeof(value) - (len % sizeof(value));
size_t nalloc = (len + pad_length) / sizeof(value) + 1ULL;
GC_SAVE1(nalloc)

value *argv = tinfo->alloc;
argv[0LLU] = (value)(((nalloc - 1) << 10) + 252LLU); ᲆ᳆ string tag

ᲆ᳆ Make the characters
char *ptr = (char *) (argv + 1LLU);
temp = save0;
while (get_Coq_Strings_String_string_tag(temp) Ṣṣ 1) {
*ptr = ascii_to_char(get_args(temp)[0]);
ptr++;
temp = get_args(temp)[1];

}
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ᲆ᳆ Make the padding
for (i = 0; i < pad_length - 1; i++) {
ptr[i] = 0;

}
ptr[i] = i;

tinfo->alloc += nalloc;
return (value) (argv + 1LLU);
ENDFRAME

}

This function performs the following steps:

1. traverses the Coq string once to compute its length, stored in len

2. makes sure there are n = 1+ ⌈(len+1)/8⌉words in the CertiCoq heap, where it can

place the bytestring

3. makes the bytestring header using the special tag and the number of words needed for

the bytestring content

4. makes the character by traversing the Coq string and converting each C char to a Coq

ascii, by calling the ascii_to_char function, which we have implemented by hand but

omit here

5. makes the padding by adding null bytes, followed by howmany extra null bytes had to

be added

6. returns a pointer to the first character byte.

Our implementations of C.unpack and C.append are similar to the implementation of C.pack

thatwepresentedhere. To summarize, C.unpack traverses all the character bytes in thebytestring
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and creates ascii and string values, using the glue code. C.append computes the lengths of

both of its inputs, allocates enough words in the CertiCoq heap, copies characters, and adds

padding.

8.2.3 The FunctionalModel

The simplest way to model bytestrings in Coq is to define them as Coq strings. This makes

the functional models of all the functions that operate of our foreign type trivial:

Module FM.
Definition bytestring : Type ᨼ= string.
Definition pack (x : string) : bytestring ᨼ= x.
Definition unpack (x : bytestring) : string ᨼ= x.
Definition append (x y : bytestring) : bytestring ᨼ= append x y.

End FM.

A curious reader might wonder why we did not address the length of the bytestring in

our functional model. This would be a fair question, given that we have addressed a similar

restriction in the functionalmodel for integers, in Section 8.1. Our answer in this case is prac-

ticality. In the memory representation above, we showed that the bytestring header contains

54 bits (in a 64-bit setting) for the size of the string, in words. Thus, the largest bytestring we

can create will have (254) · 8, or 257 bytes, which is 128 petabytes. For C.pack, we would need

to start with a Coq string. In order to reach a bytestring that is 128 petabytes, at 2words per

record, we would need 2 · 8 · 257 = 261 bytes of memory, i.e.≈ 2.3 exabytes.19 Here we are

assumingwe are not going to runCoq functions onmemories that large, but it is also possible

to design a functional model for bytestrings in a way that would account for the maximum
19This question and its answer was observed by Appel.
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length.20

We will not present any proofs about the models for the foreign functions on bytestrings

since our model is trivial and all proofs will simply be about Coq strings.

8.3 Printing Bytestrings

So far, we have only implemented pure foreign functions. Neither integers nor bytestrings

have any side effects; functions that operate on them are guaranteed to return the same result

every time they use the same arguments,21 with no observable difference from the outside.

Real programs, however, often need to have side effects, therefore we need to find a way to

write effectful programs if we want to be able to express them.

Two factors require us to keep the language pure evenwhen expressing effectful programs.

The first factor is that Coq does not have a default evaluation order, since its underlying type

theory enjoys strong normalization and confluence [35, 119]. The second factor is that we

use our functions in proofs and types, and we do not want proofs and types to depend on

the outside world.

Thankfully, we are not the first to face this conundrum. The Haskell community has en-

countered the samequestion from thebeginning; in their case,Haskell’s lazy evaluationmade

it difficult to predict when a function’s side effect would be executed. Their solution was to

forbid functions from having side effects22 and to exile all side effects into the IOmonad. Ef-

fectful programs are then expressed as terms with an IO type, parametrized by the result type
20In such a design, the pack function would have decide how to treat the inputs that would create bytestrings

larger thanwhat the bytestring representation could handle. The pack function could choose to return only the
part that fits in memory, or it could choose to return an option value, etc.

21As long as there is enough space in the CertiCoq heap. If not, garbage collection will fail with an error.
22As noted in the famous XKCD comic:

“Code written in Haskell is guaranteed to have no side effects.” “... because no one will ever run it?” [75]
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of the computation. For example, here are the Haskell terms that we use for printing to and

scanning from the console:

putStrLn ᱰᲰ String -> IO String
getLine ᱰᲰ IO String

Neither of these terms have side effects by themselves; they are merely actions that we can

use to build a program. The user composes these actions using the monadic bind to build

larger programs. Here is an example Haskell program, written as a chain of monadic actions

(without syntactic sugar, i.e. do notation):

main ᱰᲰ IO ()
main = getLine >>= (\x -> putStrLn ("Hello " ++ x))

This program, when executed, reads a line of user input from the console, prepends the

input string with another string, and prints the new string. What triggers the execution,

however, is the runtime: Haskell’s runtime is hard-coded to execute the main action when the

program starts. The runtime has an interpreter for actions, which executes the left side of the

bind, plugs the result in the function on the right side of the bind, and keeps interpreting.

This design allows us to express effectful programs purely (since actions are values that do not

have side effects before execution), provides explicit sequencing for effectful computations,

and makes the execution order of effects predictable.

We want to express effectful programs the same way in Coq, for which we will have to

write an interpreter for actions in C.

In this section, we will extend our foreign bytestring implementation from the previous

section with a monad that has effectful actions to print bytestrings into a stream and to scan

(read) bytestrings from a stream. The VST proofs for these functions will be addressed in

future work.
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8.3.1 The Coq Interface

Our interface will have to contain amonadic type M, a function pure to inject pure values into

our monad (also called returning), and a function bind to express an effect followed by more

computation or effects. We also expect functions in the interface that express effects, such as

print for printing and get_line for taking inputs. Here is what that interface looks like as a

Module Type:

Module Type Bytestring.
(* Definitions from the previous version of Bytestring *)
Parameter M : Type -> Type.
Parameter pure : forall {A : Type}, A -> M A.
Parameter bind : forall {A B : Type}, M A -> (A -> M B) -> M B.
Parameter print : bytestring -> M unit.
Parameter get_line : M bytestring.
Parameter same_behavior : forall {A : Type}, M A -> M A -> Prop.

End Bytestring.

Notice that we have an additional element in this module type, called same_behavior. We

will use this relation later in Subsection 8.3.4 to reason about actions, to assert that two ac-

tions have the same behavior.

Following the recipe we demonstrated in the previous examples, wewant to implement a C

module of themodule type Bytestring. Until now, the Cmodules we have seen have consisted

of Axioms. These axioms were only realized when a Coq program that uses them is compiled

to C and the compiled program is linked to the C file containing the foreign functions. We

will, however, diverge from this recipe now.

Just like how we would design a abstract syntax tree (AST) in Coq for an interpreter in

Coq, wewill design anAST inCoq for an interpreter inC.The userwill write their programs

using this AST, and compile them. The interpreter for this AST, which is written by the
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user of our foreign function interface, will be called from the C wrapper file described in

Chapter 3.

Module C <ᨼ Bytestring.
(* Definitions from the previous version of C for bytestrings *)

Inductive MI : Type -> Type ᨼ=
| pureI : forall {A : Type}, A -> MI A
| bindI : forall {A B : Type}, MI A -> (A -> MI B) -> MI B
| printI : bytestring -> MI unit
| get_lineI : MI bytestring.

Definition M : Type -> Type ᨼ= MI.
Definition pure : forall {A : Type}, A -> M A ᨼ= @pureI.
Definition bind : forall {A B : Type}, M A -> (A -> M B) -> M B ᨼ= @bindI.
Definition print : bytestring -> M unit ᨼ= @printI.
Definition get_line : M bytestring ᨼ= @get_lineI.

Axiom same_behavior : forall {A : Type}, M A -> M A -> Prop.
End C.

Wedefinehere an inductive type23 that has constructors for both themonadic components

(such as returning and binding) and the effectful foreign functions. We then provide aliases

for these constructors, because Coq modules do not allow us to use constructors to satisfy

the requirements of a Module Type. Finally, we axiomatize same_behavior, whichwill onlymake

sense when we have a functional model for it.

With this interface, we can write the same Haskell function now in Coq:

Definition main : C.M unit ᨼ=
C.bind C.get_line (fun x => C.print x).
23If we wanted to express possibly nonterminating programs, we could have described the free monad as a

coinductive type. Other than having to force the thunk explicitly from theC side, notmuchwould have changed
operationally. Abel et al. [1] explore a coinductive IOmonad forAgda, whichwe could base a similarCoq system
on.
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8.3.2 The C Implementation

Anotherwaywehavediverged fromtheusual recipe is the lack24 of theuseof CertiCoq Register

to register any of our effectful functions. This is a deliberate choice on our part; we will im-

plement a function runM that executes an action, and runM will be called in the C wrapper file

after computing the program result. We define runM as such:

typedef enum { PURE, BIND, PRINT, GETLINE } M;

value runM(struct thread_info *tinfo, value action) {
BEGINFRAME(tinfo, 2)
switch (get_prog_C_MI_tag(action)) {
case PURE:
return get_args(action)[1];

case BIND: {
value arg0 = get_args(action)[2];
value arg1 = get_args(action)[3];
value temp = LIVEPOINTERS1(tinfo, runM(tinfo, arg0), arg1);
temp = call(tinfo, arg1, temp);
return runM(tinfo, temp);

}
case PRINT: {
value arg0 = get_args(action)[0];
print_bytestring(s);
return make_Coq_Init_Datatypes_unit_tt();

}
case GETLINE:
return get_line_bytestring(tinfo);

default:
return 0;

}
ENDFRAME

}

24We still use CertiCoq Register for C.pack, C.unpack, and C.append on bytestrings.
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We start by defining a C enum that makes it easier to understand what constructor of C.MI

is handled, and then move on to the runM function. runM traverses the action AST that was

built on the Coq side and returns the value inside the monad. The PURE case is simple; we

just return the argument in the constructor.25 The PRINT and GETLINE cases are simple to in-

terpret, although herewe elide the print_bytestring and get_line_bytestring functions, where

the complexity of these cases is hidden.

The BIND case is at the crux of our interpreter for monadic actions. We collect themonadic

action and the continuation function from the MI.bindI constructor. Then, we have to exe-

cute the monadic action to obtain the input of the continuation function, which we achieve

with a recursive call to runM. When executing this monadic action, we have to keep in mind

that arg1 is not in the roots, and it should be protected if our recursive call ultimately calls

the garbage collector. Once we know what input to call the continuation function with, we

can call it. The continuation function returns another monadic action, which we can pass

to another recursive call to runM.

This function currently uses the C call stack to handle recursion. To avoid stack overflow

errors, we can choose to implement runMwith an explicit call stack, orwe can try to rewrite the

action input of runM using the associativity law ofmonads [115], where C.bind (C.bind m f) g

canbe rewritten to C.bind m (fun x => C.bind (f x) g). Repeated applicationsof such rewrites

can ensure that the action argument to C.bind is atomic, after which we only need tail recur-

sion to execute the remaining action. We leave this implementation detail to the users of our

foreign function interface.
25Note that the 0th index in the array returned by get_argswill contain the type argument for MI.pureI.
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8.3.3 The FunctionalModel

Following theHaskell tradition [86], we define the functionalmodel of our effectfulmonads

as a function from the state to a pair of a result and the new state. For our particular set of

effects, where we only write to the console and read from the console, wemodel the program

state as the input stream to the program and the output stream from the program. The rest

of our functional model definitions mirror the purely functional state monad [55].

Module FM <ᨼ Bytestring.
(* Definitions from the previous version of FM for bytestrings *)

Definition state : Type ᨼ=
(string * string). (* the input stream and the output stream *)

Definition M (A : Type) : Type ᨼ= state -> A * state.
Definition pure {A : Type} (a : A) : M A ᨼ= fun s => (a, s).
Definition bind {A B : Type} (m : M A) (f : A -> M B) : M B ᨼ=
fun s => let '(a, s') ᨼ= m s in f a s'.

Definition print (x : bytestring) : M unit ᨼ=
fun '(input, output) => (tt, (input, append output x)).

Definition get_line : M bytestring ᨼ=
fun '(input, output) => (substring 0 n input,

(substring n (length input) input, output)).

Definition same_behavior A (a1 a2 : M A) : Prop ᨼ=
forall (s : state), a1 s = a2 s.

End FM.

Beforewemoveon to theproofs aboutour functionalmodel, let us observeour same_behavior

definition above. We left its definition as an axiom in the Cmodule with no intention of re-

alizing its definition on the C side, but we are actually providing a Coq definition in the

functional model. We do not need to provide a definition in the C module; same_behavior
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returns a Prop, which is erased by CertiCoq. Therefore same_behavior itself never has com-

putationally relevant content. In FM, however, we need a real definition so that we can later

rewrite the uses of C.same_behavior into FM.same_behavior and proceed with the proof.

8.3.4 Model Proofs for Foreign Functions

In the previous examples of the foreign function interface, we have used Coq’s equality type

= to claim equalities between values of a foreign type. Unfortunately, this approach does not

make sense for effectful actions; these values are ASTs of actions and the equality of the AST

is not correlated with the equality of the output when the actions are executed. It is possible

for two action ASTs to be different and have the same output when executed, just as it is

possible for two ASTs to be the same and have different outputs. Therefore, we will use the

same_behavior relation that we included in our interface.

Section BytestringProofs.

(* Generation of foreign function descriptions. *)
Parameter pure_spec.
Parameter bind_spec.
Parameter print_spec.
Parameter get_line_spec.
Parameter same_behavior_spec.

We use the mechanisms in Section 7.4 and Section 7.5 to set ourselves up to rewrite func-

tions from C to their FM counterparts. We are now ready toprove a simple result about printing

bytestrings, following a similar idea to that of Swierstra and Altenkirch [109], who provide a

functional semantics for the “awkward squad” to reason about impure code:
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Theorem print_steps :
forall (a b : C.bytestring),
C.same_behavior (C.bind (C.print a) (fun _ => C.print b))

(C.print (C.append a b)).
Proof.
intros a b.

eapply (transport id). symmetry.
eapply (same_behavior_spec unit); simpl.
foreign_rewrites.
unfold FM.same_behavior.

props bind_spec.
foreign_rewrites.
unfold FM.bind.

props print_spec.
foreign_rewrites.
unfold FM.print.

props append_spec.
foreign_rewrites.
unfold FM.append.

intros [instream outstream].
rewrite append_assoc; auto.

Qed.

End BytestringProofs.

We provide the type argument unit to same_behavior_spec, since our example program has

the type C.M unit. Then we rewrite C terms to their FM counterparts, unfold the FM definitions,

and finish the proof.

Unlike themodel proof in Section 8.1, ourmodel proof onmonadic effects does not let us

rewrite a theorem statement about functions from C into a theorem statement about func-

125



tions from FM all at once. Since the rest of the monadic action depends on the result of the

continuation, we can only rewrite and unfold one step at a time. Once the functional model

definition of the continuation is evaluated, we can rewrite and unfold it once again.

8.4 Mutable Arrays

Purely functional data structures are easier to reason about than imperative data structures.

However, they are inherently inefficient for some use cases [91, 17, 89, 76], therefore we in-

evitably need mutable data structures.

Mutable data structures à la OCaml break purity, which is why we only want to allow

them in a controlled way. Oneway to implement themwithout breaking purity is, of course,

to implement them as an effect, similar to how we printed bytestrings in Section 8.3. How-

ever, this may be more restricting than we need. As Launchbury and Peyton Jones [61] have

demonstrated for the STmonad in Haskell, it is possible to have local mutation that is exter-

nally pure. That is, a client of our function with local mutation cannot tell if our function

has mutation in it; its type is pure and it returns the same value for the same inputs.

In this section, we will implement a monad to use mutable arrays as a foreign type in Coq,

and functions to set, get, and run the monad as foreign functions. The VST proofs for these

functions will be addressed in future work.

8.4.1 The Coq Interface

Here we will follow a similar approach to how we handled effects in Section 8.3, but we can

now expose runM to theCoq side, since we canmodel themutation in a purely functional way

and it does not break purity.
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Definition elt ᨼ= nat.

Module Type Array.
Parameter M : Type -> Type.
Parameter pure : forall {A : Type}, A -> M A.
Parameter bind : forall {A B : Type}, M A -> (A -> M B) -> M B.
Parameter set : nat -> elt -> M unit.
Parameter get : nat -> M elt.
Parameter runM : forall {A : Type} (len : nat) (init : elt), M A -> A.

End Array.

Once again, we havemonadic components for returning and binding, as well as “effectful”

operations on arrays, such as getting and setting. The main difference is the runM function,

which takes the length of the initial array and the initial value at unset indices of the array.

Our approach here is different from that of Launchbury and Peyton Jones in that we do

not apply their rank-2 types trick for the STmonad, which restricts references from escaping

the monad. Instead, we never expose a reference to a mutable variable (or the entire array)

from the interface. The userwill have only one array in each instance of themonad M.26While

our interface here looks similar to that of Sakaguchi [94], our approach here is simpler and

less type-safe.27 This is a deliberate design choice to make the proof simpler to present.

Module C <ᨼ Array.
Inductive MI : Type -> Type ᨼ=
| pureI : forall {A : Type}, A -> MI A
| bindI : forall {A B : Type}, MI A -> (A -> MI B) -> MI B
| setI : nat -> elt -> MI unit
| getI : nat -> MI elt.

Definition M ᨼ= MI.
Definition pure : forall {A : Type}, A -> M A ᨼ= @pureI.
26Users can have multiple arrays using a monad stack.
27For C.set, we ignore the operation if the index is out of bounds. For C.get, we return the default element

if the index is out of bounds.
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Definition bind : forall {A B : Type}, M A -> (A -> M B) -> M B ᨼ= @bindI.
Definition set : nat -> elt -> M unit ᨼ= @setI.
Definition get : nat -> M elt ᨼ= @getI.
Axiom runM : forall A (len : nat) (init : elt), M A -> A.

End C.

Similar to Section 8.3, we implement operations in themutable arraymonad as an abstract

syntax tree of actions. We will still have a runM function in C to interpret these actions, but

this time, we will expose it to the Coq side by declaring it an Axiom and telling the compiler

that this axiom is realized by a particular C function.

CertiCoq Register [ C.runM => "runM" with tinfo ] Include [ "prims.h" ].

8.4.2 The C Implementation

We implement the C side of the mutable array monad interpreter with two functions: runM

allocates the necessary space on the CertiCoq heap and initializes the array with the initial

value at each index. executeM traverses the monadic action and executes it.

value runM(struct thread_info *tinfo, value a, value len,
value save0, value save1) {

BEGINFRAME(tinfo, 2)
size_t size = nat_to_size_t(len);
nalloc = size + 1; GC_SAVE2
value *arr = tinfo->alloc;
arr[0LLU] = size << 10;
arr = arr + 1LLU;
for (size_t i = 0; i < size; iṸṻ) {
arr[i] = save0;

}
tinfo->alloc += nalloc;
return executeM(tinfo, size, save0, (value) arr, save1);
ENDFRAME

}
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The function first converts28 the array length len, which is a Coq nat, to a C size_t. This

number determines howmuch space we need to allocate on the CertiCoq heap. We treat the

array like a Coq constructor with that many arguments, we allocate one word for the header

and one word per array index. Of course, while we perform a memory check and possibly

call the garbage collector, we have to make sure the initial value for the array (save0) and the

monadic action (save1) are not collected by accident, therefore we save them in a stack frame

using the GC_SAVE macro. Once we have enough space, we initialize the array with the initial

value save0, and call executeM to execute the monadic action.

typedef enum { PURE, BIND, SET, GET } M;

value executeM(struct thread_info *tinfo, size_t size,
value init, value save0, value save1) {

BEGINFRAME(tinfo, 2)
switch (get_prog_C_MI_tag(save1)) {
ᲆ᳆ Cases for PURE and BIND as before
case SET: {
value arg0 = get_args(save1)[0];
size_t i = nat_to_size_t(arg0);
if (i < size) {
nalloc = 1; GC_SAVE2
value arg1 = get_args(save1)[1];
certicoq_modify(tinfo, (value *) save0 + i, arg1);

}
return make_Coq_Init_Datatypes_unit_tt();

}
case GET: {
value arg0 = get_args(save1)[0];
size_t i = nat_to_size_t(arg0);
if (i < size) {
return get_args(save0)[i];

} else {
28The implementation of nat_to_size_t is almost the same as uint63_from_nat, just without the bit shifting to

make the last bit 1.
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return init;
}

}
}
ENDFRAME

}

Our executeM implementation is similar to the runM implementation in Subsection 8.3.2; it

is a free monad interpreter written in C. We omit the PURE and BIND cases here since they are

almost the same as the previous interpreter. The SET and GET cases, however, are interesting.

When we see a SET action, we want to find the right slot in the array and assign the new

value in that slot. However, we have to notify the garbage collector that we have a mutable

reference, because the garbage collector normally operates on the assumption that older val-

ues never point on the newer values, which allows it to move values around freely and erase

unused values [44]. By creating a mutable reference, we break that assumption, therefore we

have to keep a remembered set of old values pointing to new values, so that the garbage collec-

tor can update these references when new values are moved [95]. We achieve that with a call

to certicoq_modify29, which is a write barrier that saves the mutable reference to the bottom

end of the CertiCoq heap and therefore keeps a remembered set.

When we see a GET action, we simply access the index in the array if it is within bounds, or

return the default value of all indices if the index is out of bounds.

Reuse in Persistent Arrays While the design of our array interface and its foreign

functions is formutable arrays, it is possible to use the samememory representation of arrays

for persistent arrays, which are recently introduced to the Coq standard library [33, 39].
29certicoq_modifywas implemented by Tim Carstens and Appel.
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8.4.3 The FunctionalModel

The functional model for our mutable array monad is similar to our functional model for

effects in Section 8.3, except we also provide an implementation for runM, which interprets

the abstract syntax trees of actions in a purely functional way.

Module FM <ᨼ Array.
Definition state : Type ᨼ=
(list elt * elt). (* the internal list and the default element *)

Definition M (A : Type) : Type ᨼ= state -> A * state.
Definition pure {A : Type} (a : A) : M A ᨼ= fun s => (a, s).
Definition bind {A B : Type} (m : M A) (f : A -> M B) : M B ᨼ=
fun s => let '(a, s') ᨼ= m s in f a s'.

Definition set (index : nat) (x : elt) : M unit ᨼ=
fun '(l, init) => (tt, (replace_nth index l x, init)).

Definition get (index : nat) : M elt ᨼ=
fun '(l, init) => (nth index l init, (l, init)).

Definition runM {A : Type} (len : nat) (init : elt) (m : M A) : A ᨼ=
fst (m (repeat init len, init)).

End FM.

8.4.4 Model Proofs for Foreign Functions

In Subsection 8.3.4, we argued that usingCoq’s equality type =does notmake sense for effect-

ful actions, since the output of the execution depends on the outside world. In our mutable

array monad, however, the output does not depend on the outside world, and we do not

break purity by calling runM to execute the monadic action. Therefore, we can call C.runM on

both sides of the equality, and as long as the array size and default value are the same, we can

argue that two different actions have the same result.

In the example below, we prove that first setting an index of an array to a value and then

getting the value at that index, gives the same final result (but not the same state). Our proof

131



once again resembles that of Swierstra and Altenkirch [109], since we use the functional se-

mantics in FM to reason about mutable state:

Lemma set_get :
forall (n len : nat) (bound : n < len) (init : elt) (to_set : elt),
(C.runM len init (C.bind (C.set n to_set) (fun _ => C.get n)))
=

(C.runM len init (C.pure to_set)).
Proof.
intros n len bound init to_set.

props runM_spec.
foreign_rewrites.
unfold FM.runM.

props bind_spec.
props pure_spec.
foreign_rewrites.
unfold FM.bind, FM.pure.

props set_spec.
props get_spec.
foreign_rewrites.

eapply nth_replace_nth.
rewrite repeat_length.
auto.

Qed.

Similar to Subsection 8.3.4, we have to rewrite and unfold the C functions one at a time,

since the second argument of C.bind, the continuation, hides more uses of functions from C

inside. Once the functional model definition of the continuation is evaluated, we continue

rewriting and unfolding as necessary and finally finish the proof by reasoning about the func-

tional model definitions FM.set and FM.get.
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9
RelatedWork
Comparison is the thief of all joy.

Theodore Roosevelt, in a letter toW.S. Bigelow, 1898

Some of the main contributions of this dissertation, as well as the examples presented in

Chapter 8, build upon preexisting work in the literature. In this section, we review the pre-

cursors and inspirations for these ideas and compare them to our approach.

9.1 Comparisonwith the Predecessors of Reified Descriptions

In Chapter 5, we introduced reified, a Coq inductive data type that can describe and anno-

tate Coq types. This representation is a combination of deep and shallow embeddings. We

used reified to describe constructors (in Chapter 6) and foreign functions (in Chapter 7),

and to generate VST specifications.

Ours was not the first combination of deep and shallow embeddings. Others have also

attempted to create similar representations and observed that such approaches are easy to in-

terpret into other types. We can categorize these attempts as general approaches and domain-

specific approaches.

On the general side,McBride (2010) [72] presents a deep/shallow embedding for a depen-

dent type theory, where they use mutual induction and induction-recursion [41] to define

the syntax and typing judgments for object language, as well as its interpretation to the host
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language at the same time. This approach allows the user to take advantage of the host lan-

guage’s type equality, instead of defining a semantics for the object language. Prinz et al.

(2022) [92] present another way of combining deep and shallow embeddings without us-

ing induction-recursion. This method indexes the object language definition by the shallow

embedding of every term. While this is a less natural way to define an object language, it re-

quires less from the host language, making it easier to achieve syntactic transformations like

renaming and substitution.

In comparison to these general approaches, our approach of reified description with an-

notations is not as general; it can be considered a special case of McBride [72] or Prinz et al.

[92], except where both the object language and the host language is Coq. This coincidence

enables us to reusemore features of the host language than name binding and normalization;

we can also annotate the components of a Coq type with Coq type class instances, and we

can interpret a Coq type description back to its correspondingCoq typewithout extra use of

metaprogramming. This allows us to carry values satisfying a type description in a type-safe

way, which we use in Section 6.1 and Section 7.1 to achieve reflection of constructors and

foreign functions from their descriptions.

On the domain-specific side, Svenningsson and Axelsson (2013) [107] present a design

pattern inHaskell, where an embedded domain-specific language is presented in a deeply em-

bedded way, augmented with a type class that allows expressing a correspondence between

the deep embedding and its shallowly embedded counterpart. In the same tradition of re-

search, Gibbons and Wu (2014) [49] explore the algebraic connection between deep and

shallow embeddings of domain-specific languages and how folds are critical for this connec-

tion, even though the paper does not present a new technique to combine these embeddings.
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While superficially related, our approach in reified descriptions is quite different. Sven-

ningsson and Axelsson’s encoding is a solution to the expression problem [116], while our

approach is focuses on making traversals of function types easier.

9.2 ComparisonwithOtherWork on Safe Interoperation

VeriFFI provides a roadmap to verify the correctness of foreign functions and the safety of

multilingual interoperation. In this section, we discuss other systems that attempt a similar

goal. The section is organized mostly in chronological order, with occasional out-of-order

citations for relevant tangents.

Blume (2001) [20] presents an FFI system between StandardML and C but aims to allow

users to write their low-level functions in StandardML, by providing a method to represent

C types in ML. CertiCoq’s FFI aims for the opposite; it exposes Coq types into C (not as

C types but as glue functions) because we want users to write their foreign functions in C

so that we can take advantage of VST’s separation logic to reason about them. In possible

future work, it would be possible to implement a similar approach to Blume’s as a library for

VeriFFI, where the C types would be reified by CompCert’s Clightgen and then handled by

MetaCoq to generate Coq types.

Furr andFoster (2005) [46] explore static checks to ensure that foreign functions donot vi-

olate type safety inOCaml, and in later work, Java’s JNI [47, 48]. Their work presents amul-

tilingual type system that captures how OCaml values are represented in memory, and uses

data-flow analysis to check foreign function calls do not introduce type and memory safety

violations. This approach falls short of our needs in two aspects: One aspect is that their ap-

proach has problems with polymorphism, yet VeriFFI deals with full dependent types. The
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other aspect is that VeriFFI can express more than the type safety of the calls; users can verify

that a foreign function returns the same results as its functional model. However, their work

involves automatic inference of higher-level language types from foreign function implemen-

tations in C and therefore is easier than VeriFFI to apply in larger codebases.

CakeML(2014) [60] is a compiler for a subset of StandardML, verified in theHOL4proof

assistant. Guéneau et al. (2017) [50] integrateCharacteristic Formulae, a separation logic for

statefulML programs, into CakeML. This system supports foreign functions as well, but ul-

timately this system reasons aboutML, the higher-level side of the two languages interacting

via the FFI.Hence, it is possible to write specifications on how the foreign function is used in

ML, but there is no mechanism to verify that the foreign function is implemented correctly.

In comparison, VeriFFI allows both reasoning about the higher-level side, since it is just Coq

code, and the lower-level side, since VST’s separation logic andC program logic are available.

Œuf (2018) [74] is another verified compiler project from Coq to C. Œuf can compile a

subset of Gallina, with no user-defined types, dependent types, fixpoints, or pattern match-

ing. In comparison, CertiCoq can compile all of Gallina. Œuf’s compiler correctness the-

orem allows the shim (wrapper code in C that executes the compiled Coq program) to be

verified using VST, but it does not have a story about how Coq programs can call C pro-

grams, or regarding the specified/verified attachment of a garbage collector.

Cogent (2022) [31] allows one to write functional programs in the HOL logic that type-

check in HOL and can be proved correct in HOL, but that also type-check in a much more

restrictivefirst-order linear type system—that is, nonestedhigher-order functions, no sharing

of data structures. These first-order linear programs are compiled to C code that (because

they are linear) can use malloc/free and do not require a garbage collector. Although that is a
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reasonable trade-off tomake, it severely restricts the expressiveness of the functional language.

Turcotte et al. (2019) [113] propose a framework for defining the whole language seman-

tics of FFIs without modeling the semantics of the guest language. This framework allows

them to prove the conditional soundness of the host language, stating that any unexpected

runtime errors must originate from foreign functions. They also provide an implementation

of such an FFI system for Lua as the host language and C as the guest language.

Patterson et al. (2022) [81] provide not a system but a recipe (following the theoretical

work of Matthews and Findler (2007) [70] and Perconti and Ahmed (2014) [84]) for sound

language interoperability. Their approach involves augmenting their higher-level language

with a construct to embed lower-level language terms, and the lower-level language with a

construct to embed higher-level language terms. These terms are given a type in the language

they are embedded. Their framework stipulates a convertibility relation between the higher-

level language types and lower-level language types. While not exactly the same concept, this

relation resembles the heap graph predicates we presented in Chapter 4. Our GraphPredicate

type class instances are defined over Coq types, and they can relate Coq values of a specific

type to their memory representations in C.

Melocoton (2023) [51], perhaps the closest project to VeriFFI in the FFI literature, allows

users to write programs in a toy subset of OCaml and a toy subset of C and reason about

both sides and their interactions. Users can verify their OCaml code in an OCaml program

logic, and their C code in a C program logic, where both program logics are defined on top

of Iris, a separation logic framework embedded in Coq. Following the conventional way of

verifying interoperability through a combination of languages [70, 84], Melocoton defines

operational semantics and program logics for C, OCaml, and their combination, a “multi-
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language semantics”. The user does not have to interact with the combined language and

its program logic, but the combined program logic is essential to tie the separate parts to-

gether. Melocoton does not include a verified garbage collector, but it has reasoning based

on a nondeterministic model of a garbage collector.

In contrast to Melocoton, VeriFFI allows users to write programs in all of Gallina and

almost all of C. The user can reason about their Coq programs within Coq, which is already

a logic and proof assistant and therefore easier to reason in, and their C programs in Coq,

via the Verifiable C program logic in the Verified Software Toolchain [23], a separation logic

framework embedded in Coq.

For VeriFFI we did not have to develop a combined language and a combined program

logic for two languages; it has a simpler architecture thanMelocoton because of the languages

it is based on: Coq is both our language of reasoning and the source and implementation lan-

guage of our compiler. On the other end of the spectrum,C is both the target language of our

compiler and the language of our foreign functions. This coincidence means our multilan-

guage programs can just be “plugged together,” as both the compiler output of ourCoq code

and our foreign functions are in C. Hence, all of our reasoning about foreign functions can

be achieved within the Verifiable C program logic. VeriFFI is also based on a verified garbage

collector, CertiGC [118], whose heap graph representation is essential in how VeriFFI rea-

sons about the representation of Coq values in memory, and whose implementation can be

linked to compiled to Coq programs.
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9.3 ComparisonwithOther CompilersWork

VeriFFI can be used to implement particular data types more efficiently and bring compiler

optimizations on a case-by-case basis to CertiCoq compiled code. For example, Baudon et al.

(2023) [16] and Elsman (2024) [43] present a technique called “bit-stealing” to represent al-

gebraic data types using less space, and implement a compiler that uses this technique in all

data types. While CertiCoq does not use this technique in its representation of Coq values,

it is possible to implement a foreign type that makes this optimization for a particular type

and prove it correct using VeriFFI. One useful example would be an integer type with one

constructor with a 63-bit integer and another with a big integer. Since constructor payloads

differ in their boxities, we do not need boxed constructors and constructor headers to distin-

guish between the machine and big integers.

Chataing et al. (2024) [28] present a more fine-grained method of representing algebraic

data types more efficiently, allowing users to mark which constructors to represent in an

unboxed way. This approach makes interoperation between user-defined types and foreign

types easier, and is easier to reason about without knowing the compiler internals. While

VeriFFI does not provide this feature, it is (once again) possible to implement the algebraic

data types with custom representations presented in the paper as foreign types in VeriFFI.

A similar argument can be made about packed representations of algebraic data types.

Chen et al. (2023) [29] present a compiler that allows the user to specify custom memory

layouts for algebraic data types, and Singhal et al. (2024) [100] present another compiler that

picks the most optimal representation (i.e. with minimal pointer chasing) for data types.
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9.4 ComparisonwithOther Effect Systems

In the effectful examples in Section 8.3 and Section 8.4, we discuss the necessity of defining

effects as a free monad [108] in Coq and an interpreter for it in C. This idea derives from

the long-standing tradition of representing effects as monads in lazy languages, as proposed

by Peyton Jones andWadler (1993) [86] and later explained in further detail in Peyton Jones

(2001) [85]. We follow the same tradition and its successors in Coq.

FreeSpec (2020, 2021) [63, 64] is a Coq framework that allows the modeling and imple-

mentation (through extraction) of effectful programs. It has a monadic representation, but

it diverges from the Haskell tradition in that different kinds of effects are represented by dif-

ferent “interfaces,” which can be composed to write a program that can have various kinds of

effects at the same time, providing modularity. Interaction trees (2019) [120], another Coq

framework formodeling and implementing effectful programs, equippedwith an equational

reasoning toolkit that FreeSpec lacks, follows the same approach (though they call different

effects “events”).

The way we defined monadic effects in Chapter 8 is simpler than that. What we lose in

modularity, we gain in conciseness and performance. If we were to use interaction trees, our

compiled program using a composition of effects would require many levels of pointer indi-

rection for each binary sum of effects it has to unwrap. We want to avoid that, since it affects

the performance of the resulting program and also does not provide the most compelling ex-

ample in a dissertation. Carstens (2022) [24], for example, provides a non-modular but flat

collection of effects, which eliminates this indirection.
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It is possible to use interaction trees to write effectful programs with CertiCoq and Veri-

FFI. In fact, this approach meshes well with the VeriFFI infrastructure, as there is already

prior work on using interaction trees and VST to verify effectful C programs, such as a web

server [58].

9.5 Applications

The PhD thesis of Frank (2024) [45] uses CertiCoq to compile Linux kernel module com-

ponent formalizations fromCoq to C. His work suggests changes to CertiCoq and VeriFFI,

particularly in making the compiler output and generated glue code compatible with kernel

space.

Paykin (2024) [83] uses CertiCoq’s FFI in the opposite direction from what this disser-

tation commonly uses. Instead of running C code within Coq programs, she compiles a

verified set data structure backed by red-black trees into C and uses it from C++ code.

As CertiCoq currently does not produce binaries and requires a wrapper program to be

written, and writing wrappers that use the Coq program’s result inevitably requires the use

of generated glue code, we can expect more people to use CertiCoq’s FFI system in the near

future.
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10
Conclusion

[T]he C language continues to be a medium for much of the world’s working software

—to the continued regret of many researchers.

Stephen Kell [57]

Every approach to formal verification has a different challenge that limits its adoption and

production readiness. The main challenge in model checking is dealing with state-space ex-

plosion [32], while automatic program verification à laDafny [62] can strugglewith convinc-

ing the SMT solver that a logical formula is valid.

Using interactive theorem proving to verify software has challenges too. One tradition is

to derive the software from the proof, as done by Coq’s (or originally Nuprl’s) traditional

code extractionmethod [65, 34], or CertiCoq [4]. For programs derived in this manner, per-

formance is the main challenge. The OCaml extraction might not reach the desired perfor-

mance in performance-critical domains, since it translates the data structures in Coq directly

to OCaml, and those data structures are often not built with performance considerations.

When we try to use more efficient data structures, we can cause bugs in the extracted code,

since we might map Coq data types onto OCaml data types in a way that breaks our care-

fully constructed proofs; the new data structures are unverified and they might interact with

our code in unexpected ways. We do, however, get to take advantage of the optimizations

in the OCaml compiler and gain performance that way.30 On the other hand, CertiCoq,
30The extraction mechanism can also extract to Haskell and Scheme, for which there are mature compilers
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the verified compiler from Coq to C that this dissertation is based on, is not yet as perfor-

mant as other functional programming language compilers [77], as only a limited number of

optimizations have been implemented so far. This is partly due to the inherent overhead of

having to formally verify the correctness of each newoptimization pass, which can be a signif-

icant research undertaking in itself [114, 77, 78]. Alternatively, interactive theorem provers

can verify code written in other languages, rather than generating code fromCoq programs.

Verifiable C (in VST) [11], for verifying C code in Coq, and CFML [26, 27], for verifying

OCaml code in Coq, are examples of this approach. These projects start from the original

software, i.e. no software is derived from the proof, so performance of the derived software is

not an issue, neither do these tools lose any guarantees later in the process. The approach we

present in this dissertation is a hybrid of these two traditions that are solutions to the chal-

lenges of interactive theorem proving. With verified foreign functions, a user of our system

can

• write their program in Coq in a functional style,

• prove properties about their program in Coq,

• identify performance bottlenecks of their program, such as the underlying data struc-

tures and other computationally expensive functions,

• implement these data structures and other expensive functions more efficiently in C,

and use them as foreign types and foreign functions in their Coq programs,

like GlasgowHaskell Compiler [68] and Chez Scheme [42], so the same arguments apply.
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• prove properties with VST about these foreign types and foreign functions using the

automatically generated specifications, where they use their original functional imple-

mentation as the functional model for the proofs,

• andpreserve theproofs about their larger program since theydependon the functional

model, which the user can prove to be equivalent to the foreign implementation using

the proof interface.

A user of our system can keep refining their program until they are happy with the perfor-

mance of the resulting program, and they can still reason about their larger program as if it

is written in a functional style, while isolating the lower-level reasoning to foreign types and

foreign functions. This approach not only recuperates potential performance dips caused by

the inadequacy of compiler optimizations, but also helps with theoretical limits associated

with purely functional data structures [91, 17, 89, 76].

Our systemmakes this hybrid workflow possible by facilitating

• the implementations of foreign types and foreign functions by generating glue code,

• proofs about the foreign functions by generating function specifications andmemory

predicates about Coq types,

• and the preservation of proofs about the larger program by providing a mechanism

to rewrite proof obligations about programs using foreign functions into equivalent

programs using the functional model.
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Glossary

boxed A value that is represented in memory with indirection, such as a pointer into a sep-
arate data structure that holds information. 36, 38, 39, 42, 43, 45, 102, 103, 145

boxity Whether a value is boxed or unboxed. 38, 139, 147

C heap The region inmemory outside of the CertiCoq heap. Memorymanagement of this
region is the user’s responsibility. 37, 47

CertiCoq heap The region in memory the CertiCoq runtime primarily operates on, and is
garbage collected by the CertiCoq runtime. 34, 36, 37, 46, 76–78, 80, 81, 93, 95, 104,
105, 109, 115–117, 128–130, 138, 145, 147

closure The value form of a function in a functional programming language. It consists of
a function and an environment, where the environment contains values for the free
variables in the function body. 39, 40, 42, 43, 45

data constructor Theonlyway of creating a value of an inductive type. Also simply referred
to as “constructor”. 11, 16, 27, 37, 39, 42, 43, 45, 58–61, 63, 65–72, 75, 76, 78–81,
92, 102, 114, 120, 122, 133, 134

deep embedding A description of an object language where the syntax tree of the object
language is data in the host language. 59, 61, 133, 134

foreign function A function that is implemented in a different language than the primary
programming language. 3, 10–12, 45, 58, 59, 66–68, 75, 76, 82–84, 87–97, 99–103,
106–109, 111, 112, 117, 119, 120, 126, 130, 133–137, 143–145, 147

foreign function interface (FFI) Amultilanguageprogramming style inwhichone language
imitates the calling conventions of the other languages so that the two languages can
call each other. Consists of foreign functions and foreign types. 3, 10–12, 75, 82, 84,
95, 96, 99, 120, 122, 124, 135–137, 141
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foreign type A type whose values are defined in a different language than the primary pro-
gramming language. 3, 12, 41, 45, 46, 82–86, 95, 96, 99–102, 107–109, 111, 112,
116, 118, 124, 126, 139, 143–145, 147

functional model A program written in Coq that implements the same function we want
to prove algorithms about. It is often easier to use a functional model as an inter-
mediate step in proving that an imperative program satisfies a high-level specification.
We canprove separately that the functionalmodel satisfies high-level specification, and
that the imperative program implements the same thing as the functionalmodel [9, 8].
3, 10, 12, 82–92, 94–96, 99, 101, 106–110, 116, 120, 123, 126, 131, 132, 136, 146

Gallina The language of terms in Coq. Also see Ltac and Vernacular. 14, 15, 18, 19, 27, 28,
49, 52, 55, 60, 64, 73, 79, 136, 138, 146, 148

glue code Functions that help programmers inspect, construct, or call one language’s values
from another language. For CertiCoq’s generated glue code, see Section 3.2. 10, 11,
33, 45, 75, 76, 112, 116, 135

header (memory) An extra field where metadata about whatever comes afterwards can live.
43

host language The language the compiler is implemented in. 13, 59, 134, 146

index An argument to the inductive type constructor that can vary between data construc-
tors of that type. 16, 27, 43, 49, 51, 84

inductive type A generalized version of algebraic data types, used for defining custom data
types in Coq. 15, 16, 18, 23, 27, 35, 37–39, 45, 46, 51, 53, 61, 67, 69–71, 82, 83, 112,
120

locally nameless Arepresentation for variableswhere free variables are represented asnames,
while bound variables are represented as de Bruijn indices. 49

Ltac The language of tactics in Coq. Explained in more detail in Subsection 2.3.2. Also see
Gallina and Vernacular. 14, 15, 19, 25–29, 49, 71–74, 146, 148

meta language For a compiler context, see host language. For a metaprogramming system:
the language the user would write code in, as opposed to the object language of the
generated code. 27
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metaprogramming Writing programs that inspect existing programs or generate new pro-
grams. 3, 19–21, 27, 58, 60, 73, 91, 134, 146

object language A language the compiler implements. Both the source and target languages
are object languages in a compiler. 27, 59, 134, 146

ordinal The index of a constructor within the constructors of that inductive type with the
same boxity. Not the same thing as a tag. 38, 147

parameter An argument to the inductive type constructor that cannot vary between data
constructors of that type. 16, 23, 27, 43, 49, 51, 61, 69, 84, 86, 117

primitive The simplest building block of a programming language, not defined in terms of
other types or values in the same language. We consider foreign functions and foreign
types primitives of a language as well. 3, 19, 42, 44–46, 51–55, 58, 66, 71, 72, 147

quotation Converting a Coq expression into a syntax tree representing the expression. It is
a method of reification. 19, 147

reflection The act of converting data, or a first-class object, into code. Unquotation is an
example of reflection. 13, 65, 71, 134, 147, 148

reification The act of representing a piece of code as data, or as a first-class object. Quotation
is an example of reification. 11, 135, 147

shallow embedding A description of an object language that uses the semantics of the host
language to implement corresponding features. 61, 133, 134

source language The language a compiler translates from. 13, 147

tag The index of a constructor in the inductive type definition. Not the same thing as an
ordinal. 38, 69, 102, 147

target language The language a compiler translates to. 13, 147

thread info A C struct that holds the necessary information for the CertiCoq runtime to
work, such as the call stack, the location of the CertiCoq heap, and the location of the
next allocatable spot in that heap. Often shortened to tinfo when used in code. 34,
36, 37, 40, 77, 78, 80, 81, 93, 95, 103–105, 114, 115, 121, 128, 129, 147
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type constructor The name of a type, with no arguments applied, such as vec for the vector
type. 16

unboxed Avalue that is representedwithout amemory indirection, as a nonpointer. 36, 38,
39, 42, 43, 45, 102, 103, 111, 139, 145

unquotation Converting a syntax tree representing the Coq expression into the actual Coq
expression represented by the tree. It is a method of reflection. 20, 22, 52, 53, 147

Vernacular The language of commands in Coq. Also see Gallina and Ltac. 14, 15, 18, 21,
30, 146
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