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In the real world, almost all programs 
are written in multiple languages.
<click> and then linked together.

<click> Parts written in different 
languages can be verified separately, 
<click> but how do we prove that 
when these parts are combined into 
one multilanguage program, that it still 
works correctly?

?
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Many have studied this problem, recently 
the common approach has looked 
vaguely something like this…



We have code in two different 
languages we want to link. 
<click> We define a combination of 
these two languages, 
<click> and treat these programs as 
programs in the combined language.

This is an idea from Matthews and 
Findler, and it’s often referred to as 
the multi-language semantics 
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multi-language semantics
Matthews and Findler (2007)



approach. This is brilliant and necessary 
for the general case, but it is also a clunky 
way to reason about multi-language 
programs. It requires extra indirection, 
duplicated proof efforts, etc.

But what if we didn’t have to cover the 
general case? Can we avoid this formula 
then? We think we can because the 
languages we choose have a particular 
overlap.



That overlap goes like this: We have 
some Coq code and some C code 
that we want to link together.

<click> But we also have a verified 
compiler from Coq to C. This is the 
CertiCoq project that has been in the 
works for 10 years or so.
<click> Now that we have the C 
version of our Coq program, we can 
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Wang, Cao, Mohan, and Hobor. 
"Certifying Graph-Manipulating C Programs    
via Localizations within Data Structures" 
OOPSLA 2019

Takeaway 1:
Since the source language and the language of reasoning coincide (Coq),

and the target language and the language of foreign functions coincide (C),
we can avoid the combined language approach.



link that with our C program and reason 
about the combined program, using the 
Verified Software Toolchain (VST), which 
includes a program logic for C, based on 
separation logic.

So I want this to be takeaway one: 
<click> Since the source language of 
our compiler and our language of 
reasoning coincide (they are both Coq), 
and the target language of our compiler 
and our language of foreign functions 
coincide (they are both C), we can 
avoid the traditional approach to multi-
language semantics.

Just to get a better sense of the big 
picture,
<click> we also have a verified garbage 



collector implementation, thanks to Wang 
et al. We build our work upon their graph 
library.



And this setup constitutes our project, 
VeriFFI,<click> which is a Verified 
Foreign Function Interface between 
Coq and C, where you can call C 
functions from Coq.

Coq program components are proved 
correct directly in Coq.
C program components are locally 
proved correct using the Verified 

github.com/CertiCoq/VeriFFI
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https://github.com/CertiCoq/VeriFFI


Software Toolchain (VST).
The connection is made via VST function 
specifications that are generated by our 
system.



Let’s dig a little deeper into our setup.

Suppose we want to write a program 
that uses machine integers. Until 
recently, that wasn’t possible, you’d 
have to use an inductive type for 
integers in your program. There are 
hacks you can do in extraction but 
those can disregard the hard-earned 
guarantees you got, through the 

.

Module Type UInt63.
Parameter uint63 : Type.
Parameter from_nat : nat -> uint63.
Parameter to_nat : uint63 -> nat.
Parameter add : uint63 -> uint63 -> uint63.
Parameter mul : uint63 -> uint63 -> uint63.

End UInt63.

user's Coq code

abstract type
operations
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C functionsproofs about
C functions

functional model
in Coq

Coq proofs about
client programs

Takeaway 2:
VeriFFI allows the user to reason conventionally

in Coq and VST separately and connects these proofs together.



proofs you finished through blood, sweat 
and tears. We don’t want that! Here is the 
setup we propose.

We define an API for unsigned 63-bit 
integers in the standard way: as a module 
type in Coq, which is like a module 
signature in ML.
<click> We have an abstract type, and 
some operations defined on that abstract 
type.

<click> We want to write proofs about this 
interface, so we give a purely functional 
definition of this interface, and we can 
reason about client programs of this 
interface using that functional model.
<click> and all that reasoning is plain, 
conventional Coq!



<click> On the other hand, we write 
foreign functions that satisfy this interface, 
and we prove that these functions play 
nicely with the Coq program compiled to 
C via CertiCoq, and that they play nicely 
with the functional model.
<click> and all that reasoning is a 
conventional VST proof!

<click> All the required mechanisms in the 
middle are generated by our system, 
VeriFFI.
This is takeaway two:
VeriFFI allows you to do conventional 
reasoning in Coq and VST separately, 
and connects these proofs together.



Let’s start with the operational side.
<click> We declare an axiom for the 
type itself and the operations on it, in 
order to tell Coq that they don’t have a 
plain Coq implementation. These 
functions will be realized when we 
compile  to C and link with the foreign 
functions written in C. This is standard 
practice in Coq when you want to 
define foreign functions as well.

user's Coq code

Module C : UInt63.
Axiom uint63 : Type.
Axiom from_nat : nat -> uint63.
Axiom to_nat : uint63 -> nat.
Axiom add : uint63 -> uint63 -> uint63.
Axiom mul : uint63 -> uint63 -> uint63.

End C.
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value uint63_from_nat(value n) {
// …

}

value uint63_to_nat(struct thread_info *tinfo,
value t) {

// …
}

value uint63_add(value n, value m) {
// …

}

value uint63_mul(value n, value m) {
// …

}

user's C code

Definition dot_product
(xs ys : list C.uint63) : C.uint63 :=

List.fold_right C.add
(C.from_nat 0)
(zip_with C.mul xs ys).

CertiCoq Compile dot_product.
CertiCoq Generate Glue [ nat, list ].

Coq client of foreign functions

CertiCoq Register
[ C.from_nat => "uint63_from_nat"
, C.to_nat => "uint63_to_nat" with tinfo
, C.add => "uint63_add"
, C.mul => "uint63_mul"
] Include [ "prims.h" ].



<click> We register these references with 
Coq, and actually provide the C 
implementations of these functions.
<click> Now we are free to write our own 
functions that use integers. Like this dot 
product function on lists of integers. We 
can then compile this function to C using 
CertiCoq. This is enough for the 
operational part of the foreign function 
interface! We’re now conceptually at the 
state of the art for 1995!

Now, let’s talk about the correctness of 
these functions. How do we know that the 
C functions we wrote are 1) safe, and 2) 
functionally correct? Our idea is to write 
and prove VST specifications about these 
C functions that express that. Let us start 
with the functional correctness.



To reason about the functional 
correctness of the C function, we 
must write a purely functional model in 
plain Coq, of what these C functions 
actually do. This can be a module that 
implements the module type we had 
before.

In this module we define the integer 
type to be the inductive natural 

user's Coq code
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Module FM : UInt63.
Definition uint63 : Type := {n : nat | n  < (2^63)}.
Definition from_nat (n : nat) : uint63 := 
(Nat.modulo n (2^63); ...).

Definition to_nat (i : uint63) : nat := 
let '(n; _) := i in n.

Definition add (x y : uint63) : uint63 :=
let '(xn; x_pf) := x in
let '(yn; y_pf) := y in
((xn + yn) mod (2^63); ...).

(* ... *)
End FM.

functional
model



number type with a bound. We define its 
operations to respect modulo wrapping, 
just like machine integers. If we were to 
actually run this, it would have terrible 
performance, but that is okay, since this is 
only for the proofs, and it is an easier 
interface to write proofs for!



Let’s attempt such a proof, we can 
take to_nat here as an example, which 
is a function that converts a machine 
integer to a Coq natural number.

We want to state as a specification 
that the C implementation of to_nat
does the same thing as our functional 
model definition of to_nat. Thankfully, 
VST is a great tool for such proofs!

user's Coq code

Module C : UInt63.
Axiom uint63 : Type.
Axiom from_nat : nat -> uint63.
Axiom to_nat : uint63 -> nat.
Axiom add : uint63 -> uint63 -> uint63.
Axiom mul : uint63 -> uint63 -> uint63.

End C.
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value uint63_from_nat(value n) {
// …

}

value uint63_to_nat(struct thread_info *tinfo,
value t) {

// …
}

value uint63_add(value n, value m) {
// …

}

value uint63_mul(value n, value m) {
// …

}

user's C code

Definition dot_product
(xs ys : list C.uint63) : C.uint63 :=

List.fold_right C.add
(C.from_nat 0)
(zip_with C.mul xs ys).

CertiCoq Compile dot_product.
CertiCoq Generate Glue [ nat, list ].

Coq client of foreign functions

CertiCoq Register
[ C.from_nat => "uint63_from_nat"
, C.to_nat => "uint63_to_nat" with tinfo
, C.add => "uint63_add"
, C.mul => "uint63_mul"
] Include [ "prims.h" ].



If we were to write by hand, here’s 
what that specification would look like. 
There’s a lot here, and you don’t have 
to follow the details. Very very roughly, 
what we are saying here is this:
<click> Given some runtime info, and 
an input to the functional model,
<click> if the C function takes a value 
that corresponds to the functional 
model input,

Definition uint63_to_nat_spec : ident * funspec :=
DECLARE _uint63_to_nat
WITH gv : gvars, g : graph, roots : roots_t, sh : share, x : FM.uint63 ,

p : rep_type, ti : val, outlier : outlier_t, t_info : thread_info
PRE [ thread_info; int_or_ptr_type ]
PROP (writable_share sh; @graph_predicate FM.uint63 g outlier x p)
PARAMS (ti, rep_type_val g p)
GLOBALS (gv)
SEP (full_gc g t_info roots outlier ti sh gv; mem_mgr gv)

POST [ int_or_ptr_type ]
EX (p' : rep_type) (g' : graph) (roots': roots_t) (t_info': thread_info),
PROP (@graph_predicate nat g' outlier ( FM.to_nat x ) p’;

gc_graph_iso g roots g' roots’;
frame_shells_eq (ti_frames t_info) (ti_frames t_info’))

RETURN (rep_type_val g' p’)
SEP (full_gc g' t_info' roots' outlier ti sh gv; mem_mgr gv).

user's Coq proof

We claim that
the function body

satisfies this spec.

FM.uint63

FM.uint63

FM.to_nat xnat

...

Given some runtime info,
and an input in the 
functional model,

if the C function takes 
a value that corresponds to 
the functional model input,

then the C function 
returns a value that 
corresponds to the 

functional model output. 

Lemma body_uint63_to_nat : 
semax_body Vprog Gprog f_uint63_to_nat uint63_to_nat_spec.

Proof. ... Qed.
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<click> then the C function returns a value 
that corresponds to the functional model 
output.

There are a lot of details about how heap 
graphs and their isomorphisms. See our 
paper for the explanation.

<click> So far this is just the specification, 
so we then claim that the C function body 
follows this specification and write the 
proof by hand.
The cool part is, if we have a complete 
proof of this, that means our foreign 
function is 
1) type-safe
2) correct with respect to the functional 
model.
(Though we do not have a proof of type-



safety since it requires reasoning across 
meta-levels)

I know this spec is overwhelming.
<click> Thankfully only certain parts of it 
vary from function to function. Maybe we 
can find a way to account for these 
variations. One idea is to keep them in a 
record.



Here’s what that looks like.

We have a function description, which 
includes everything we have to know 
about this function. Most importantly, 
it has
<click> a reified description of the 
function type. Thanks to this 
description, we can ensure that the 
foreign function and the model 

Definition to_nat_desc : fn_desc :=
{| fn_type_reified :=

ARG FM.uint63 opaque (fun _ =>
RES nat transparent)

; foreign_fn := C.to_nat
; model_fn := fun '(x; tt) => FM.to_nat x
; fn_arity := 1
; c_name := "int63_to_nat"
|}.

Lemma body_uint63_to_nat : 
semax_body Vprog Gprog f_uint63_to_nat (funspec_of_foreign @C.to_nat).

Proof. 
... 

Qed.

user's Coq proof
function

description

generate function 
specification
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function in this record actually abide by 
the type.

In the reified description, we have
<click> annotations of each component of 
the type with a type class instance. In a 
function description, we use these 
instances to hold information about type-
specific memory representations.

<click> Once we finish the function 
description, we can then compute a VST 
specification from it and start writing our 
proof.



Not to sound like an infomercial, but 
there’s even more! We can also 
generate the function description 
automatically using the generator we 
wrote with MetaCoq.

I want to talk a bit more about reified 
descriptions, since I believe it’s one of 
our scientific contributions.

MetaCoq Run (fn_desc_gen FM.to_nat C.to_nat "uint63_to_nat").

Lemma body_uint63_to_nat : 
semax_body Vprog Gprog f_uint63_to_nat (funspec_of_foreign @C.to_nat).

Proof. 
... 

Qed.

user's Coq proof
generating the

function description

generate function 
specification
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This contribution comes from our 
realization that we have a choice 
about how we generate things.
We could choose to take foreign types 
and functions and generate a scary 
VST specification directly from that, 
with a colossal metaprogram. Or for 
parts where we write VST proofs by 
hand, we would write a long proof 
that’s hard to follow.

monolithic vs. distilled generation
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writing by hand

foreign types
and functions

VST specifications

Problems
1. MetaCoq is "low level" by design.
2. Metaprograms are harder to reason about!
3. Requires a much deeper understanding of the system.

VST proofs

code generation
with metaprogramming



We can call that approach “monolithic 
generation”.

But that’s not ideal: <click>
1. We use MetaCoq for code generation, 
which includes a Coq plugin for compile-
time metaprogramming, like Template 
Haskell. MetaCoq's representation of 
Coq terms is "low level" by design. 
Their main goal is to reason about 
Coq’s metatheory so that’s 
understandable, but this means it’s a 
bit more cumbersome to use for code 
generation.
2. Metaprograms are harder to reason 
about! It is harder for us to tell if our 
metaprogram generates the right 
thing, and that it always works. 



Reasoning from a meta-level above 
can get clunky.
3. Writing the proofs this way requires 
a much deeper understanding of how 
everything works, which would render 
our system unusable for most users.



Here’s what I suggest instead. We 
come up with an intermediate 
representation, that is, reified 
descriptions.
<click> We can generate these 
descriptions using compile-time 
metaprogramming.
<click> But for the rest, we do not 
need compile-time metaprogramming. 
We can write Coq functions that take 

monolithic vs. distilled generation

14

foreign types
and functions

VST specifications

VST proofs

code generation
with metaprogramming

writing by handreified descriptions

computation



these descriptions and compute whatever 
we need. This way we isolate the 
metaprogram to the first half of 
generation. Or we can write VST proofs 
with these abstractions, which makes 
them easier to write.

Okay, now we’re ready to see what a 
reified description is.



As a metaprogramming term, 
reifying means representing a 
language construct as an explicit 
object in a language. Here are we 
trying to define an inductive type in 
Coq, that describes different 
components of a Coq constructor 
type or a Coq function type.
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Inductive reified (ann : Type -> Type) : Type :=

| TYPEPARAM : (forall (A : Type) `(ann A), reified ann) -> reified ann

| ARG : forall (A : Type) `(ann A), (A -> reified ann) -> reified ann

| RES : forall (A : Type) `(ann A), reified ann.

VeriFFI’s generation library

For other mixes of deep and shallow embeddings, see:
“Outrageous But Meaningful Coincidences: Dependent Type-Safe Syntax and Evaluation”. McBride. 2010. 
"Deeper Shallow Embeddings". Prinz, Kavvos, Lampropoulos. 2022.

Takeaway 3:
By making the describer and describee the same language (Coq), and 
using higher-order abstract syntax, we can handle dependent types and 

annotate each component in a concise and type-safe way.

annotated with
type class instances



Those components are the type 
parameters, the arguments, and the 
return type. We have a constructor for 
each of these, which gives us the 
benefits of deep embedding.

<click> But notice how these two 
cases take a function as an argument. 
Thanks to this higher-order abstract 
syntax-like approach, we get the 
benefits of a shallow embedding. Most 
importantly, we get to annotate the 
description with type class instances 
that are actually indexed by the type of 
the component.

<click> These annotations have 



access to the same binder context as 
the type component! This allows us to 
describe even complicated dependent 
types.

There are other approaches that try to 
combine deep and shallow 
embeddings. Their work is more 
general than ours, which requires 
complicated mechanisms like the 
universe pattern. By not being general, 
we avoid that complexity once again. 
Here we are describing a part of Coq 
within Coq, so we can annotate these 
components with Coq type class 
instances.



And that is the other takeaway: 
<click> By making the describer and 
describee the same language (they 
are both Coq), and using HOAS, we 
can handle dependent types and 
annotate each component in a 
concise and type-safe way.

And these descriptions can be 
automatically generated from the 
function types, using our generators 
based on MetaCoq.



Well, why did we go through all this 
trouble? What do reified descriptions 
buy us? The most important aspect is 
type-safety of our specifications.

If we have a description of a particular 
function, like to_nat, we can recover 
the original types from that.
Here we recompute the type of the 
to_nat foreign function from its types’ 

C.uint63 -> nat

Compute (to_foreign_fn_type to_nat_desc).

Compute (to_model_fn_type to_nat_desc).
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This is exactly the type of C.to_nat

What do reified descriptions buy us?
1. type safety



description. We can do the same thing for 
the functional model type as well. 
Thanks to this, we can build a larger, 
dependently typed record that has a type 
description and the functions that actually 
are of that type.



The other thing we use reified 
descriptions for is rewrites of foreign 
function calls to functional model 
calls.

Here’s the problem:
We know dependent type checking 
involves evaluation! Our foreign 
functions, on the other hand, do not 
evaluate. So if we try to prove a 

Lemma add_assoc : forall (x y z : nat),
C.to_nat (C.add (C.from_nat x) (C.add (C.from_nat y) (C.from_nat z))) =
C.to_nat (C.add (C.add (C.from_nat x) (C.from_nat y)) (C.from_nat z)).

Proof.
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proofs about our Coq program

2. rewrites of foreign function calls to models



lemma involving foreign function calls, we 
have a problem: We cannot unfold the 
definitions and continue our proof…



Since these functions are axioms on 
the Coq side, they get stuck! These 
functions evaluate in a compiled 
program, because then they are 
realized by C functions, but that’s not 
good enough for compile-time 
evaluation of them! What do we do, 
then?

Lemma add_assoc : forall (x y z : nat),
C.to_nat (C.add (C.from_nat x) (C.add (C.from_nat y) (C.from_nat z))) =
C.to_nat (C.add (C.add (C.from_nat x) (C.from_nat y)) (C.from_nat z)).

Proof.
unfold C.to_nat.
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proofs about our Coq program

Error: C.to_nat is opaque.

2. rewrites of foreign function calls to models



Our solution to this is a rewrite 
mechanism. We derive a way to 
rewrite calls to the foreign functions 
into calls to the functional model. If 
you have proofs for the VST 
specifications we generated earlier, 
using these rewrite principles 
becomes fair game.

Here we use our rewrite tactic. Notice 

Lemma add_assoc : forall (x y z : nat),
C.to_nat (C.add (C.from_nat x) (C.add (C.from_nat y) (C.from_nat z))) =
C.to_nat (C.add (C.add (C.from_nat x) (C.from_nat y)) (C.from_nat z)).

Proof.
intros x y z.
props from_nat_spec.
props to_nat_spec.
props add_spec.
foreign_rewrites.
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proofs about our Coq program

1 goal

x, y, z : nat
============================
FM.to_nat (FM.add (FM.from_nat x) (FM.add (FM.from_nat y) (FM.from_nat z))) =
FM.to_nat (FM.add (FM.add (FM.from_nat x) (FM.from_nat y)) (FM.from_nat z))

2. rewrites of foreign function calls to models



how our goal is now entirely about the 
functional model, and from there it's 
straightforward to prove this goal.



Before I finish the talk, I want to show 
an example with side effects. Here is a 
mutable array example.

We can define the operational side 
with a free monad, and write an 
interpreter for it in C. Though we 
haven’t verified the interpreter in VST.

Module Type Array.
Parameter M : Type -> Type.
Parameter pure : forall {A}, A -> M A.
Parameter bind : forall {A B}, M A -> (A -> M B) -> M B.
Parameter runM : 
forall {A} (len : nat) (init : elt), M A -> A.

Parameter set : nat -> elt -> M unit.
Parameter get : nat -> M elt.

End Array.

user's Coq code

Module C <: Array.
Inductive M : Type -> Type :=
| pure : forall {A}, A -> M A
| bind : forall {A B}, M A -> (A -> M B) -> M B
| set : nat -> elt -> M unit
| get : nat -> M elt.

Axiom runM :
forall {A} (len : nat) (init : elt), M A -> A.

End C.
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typedef enum { PURE, BIND, SET, GET } m;

value array_runM(struct thread_info *tinfo,
value a, value len, value init,
value action) {

// …

switch (get_prog_C_MI_tag(action)) {
case PURE: { /* … */ }
case BIND: { /* … */ }
case SET:  { /* … */ }
case GET:  { /* … */ }

}

// …
}

user's C code

Definition incr (i : nat) : C.M unit :=
v <- C.get i ;;
C.set i (1 + v).

Coq client of foreign functions

CertiCoq Register
[ C.runM => "array_runM" with tinfo
] Include [ "prims.h" ].



We can also prove properties about 
client programs using the rewrite 
principles.
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proofs about our Coq program

1 goal

n, len : nat
bound : n < len
init, to_set : elt
============================
FM.runM len init (FM.bind (to (FM.M unit) (C.M unit) (C.set n to_set))

(fun _ => to (FM.M elt) (C.M elt) (C.get n)))
= FM.runM len init (FM.pure to_set)

Lemma set_get :
forall (n len : nat) (bound : n < len) (init : elt) (to_set : elt),
(C.runM len init (C.bind (C.set n to_set) (fun _ => C.get n)))
=

(C.runM len init (C.pure to_set)).
Proof.
intros n len bound init to_set.
props runM_spec. foreign_rewrites.
props bind_spec. props pure_spec. foreign_rewrites.
props set_spec. props get_spec. foreign_rewrites.



So, to quickly repeat the main 
takeaways:
1) We have a carefully chosen pair of 
languages that helps us avoid the 
combined language approach to 
multi-language semantics.
2) VeriFFI allows the user to reason 
conventionally in Coq and VST 
separately, and connects these proofs 
together.
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Takeaways

1. Since the source language and the language of reasoning
coincide (Coq), and the target language and the language of 
foreign functions coincide (C), we can avoid the combined 
language approach to multi-language semantics.

2. VeriFFI allows the user to reason conventionally in Coq and 
VST separately and connects these proofs together.

3. By making the describer and describee
the same language (Coq), and using HOAS, 
we can handle dependent types and
annotate each component in a concise and type-safe way.



3) Once again, since we’re reasoning 
about Coq values within Coq, when we 
describe Coq values, our describer and 
describee are the same, which allows 
concise and type-safe annotations.



That is all I have time for today. For 
details about the specifications, our 
paper is the best source. For details 
about metaprogramming, my 
dissertation is the best source. Further 
details of mutations and side effects 
are also discussed in both.

There is some future work we want to 
do.
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See our paper 
“A Verified Foreign Function Interface between Coq and C” for
• how exactly are the VST specifications are computed
• generated glue code, and its VST specifications
• more examples, such as

- primitive bytestrings and the correctness proofs of their operations
- I/O and mutable arrays

See my dissertation 
“Foreign Function Verification Through Metaprogramming” for
• the metaprogramming details

Future work / work in progress
• End-to-end compiler correctness proof of CertiCoq

for open programs, and how it connects to VST
• VST correctness proofs for I/O and mutable arrays operations



1) Most importantly, we need to complete 
the end-to-end compiler correctness 
proof of CertiCoq for open programs, and 
state how that connects to VST. We have 
an incomplete, but mostly finished 
compiler correctness proof for CertiCoq
for closed programs but that is now out of 
date. We discuss in the paper how this 
work can help us state the theorem for 
open programs.
2) We want to finish the VST proofs for 
programs with side effects and mutation.



I want to leave you with this final slide 
of comparisons with similar projects, 
that I have a hunch that most of the 
questions will be about. Thank you 
very much.

DON’T READ THIS, JUST AS A 
REMINDER:

<click> Oeuf is a verified compiler for 
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a subset of Coq with no user-defined types, 
dependent types, fixpoints, or pattern matching. It 
doesn’t feature an FFI, but it allows verifying the 
wrapper C program to be verified via VST. Oeuf allows 
plugging in a garbage collector if you want to, but it’s 
unverified.

<click> Cogent is a restricted functional language with a 
certifying (translation validation) compiler. The language 
has no general recursion or nested higher-order 
functions, but it features a uniqueness type system that 
makes garbage collection unnecessary. It allows users to 
check if their C foreign functions satisfy this type system 
and provides safety that way.

<click> CakeML is a verified compiler for ML. It allows C 
foreign functions and accounts for the correctness of the 
foreign functions in the compiler’s correctness theorem, 
but it doesn’t have a program logic in which the user can 
prove foreign functions correct. It has an oracle about 
the behavior of foreign functions that the correctness 
theorems depend on. And CakeML has a verified 
garbage collector.



<click> Melocoton is a verified FFI project that allows 
programs written in a toy subset of OCaml and a toy 
subset of C to interact. Users can prove the correctness 
and safety of their programs using Iris’s separation logic. 
While Melocoton uses the multi-language semantics 
based on a combined language, it tries to isolate users 
from that and enable language-local reasoning for code 
in OCaml or C. It uses a model of a garbage collector to 
reason about multilanguage programs.

<click> In comparison, our work, VeriFFI, is built upon on 
verified compiler, CertiCoq. It allows reasoning about 
both correctness and safety of programs written in 
Gallina and CompCert C. One can use VST’s separation 
logic to reason about C foreign functions, and it features 
a real, verified garbage collector.


