
Hi everyone!
I’m Joomy, a researcher at
Bloomberg.
Today I’m gonna talk about a verified
foreign function interface between
Coq and C.

This is a paper based on my PhD
work. It is joint work with Kathrin Stark
and Andrew Appel.

A Verified Foreign Function Interface
between Coq and C

Joomy Korkut, Princeton University & Bloomberg*
Kathrin Stark, Heriot-Watt University
Andrew W. Appel, Princeton University

POPL 2025
January 22, 2025

* Ph.D. work done before joining Bloomberg1

In the real world, almost all programs
are written in multiple languages.
<click> and then linked together.

<click> Parts written in different
languages can be verified separately,
<click> but how do we prove that
when these parts are combined into
one multilanguage program, that it still
works correctly?

?
2

Many have studied this problem, recently
the common approach has looked
vaguely something like this…

We have code in two different
languages we want to link.
<click> We define a combination of
these two languages,
<click> and treat these programs as
programs in the combined language.

This is an idea from Matthews and
Findler, and it’s often referred to as
the multi-language semantics

3

multi-language semantics
Matthews and Findler (2007)

approach. This is brilliant and necessary
for the general case, but it is also a clunky
way to reason about multi-language
programs. It requires extra indirection,
duplicated proof efforts, etc.

But what if we didn’t have to cover the
general case? Can we avoid this formula
then? We think we can because the
languages we choose have a particular
overlap.

That overlap goes like this: We have
some Coq code and some C code
that we want to link together.

<click> But we also have a verified
compiler from Coq to C. This is the
CertiCoq project that has been in the
works for 10 years or so.
<click> Now that we have the C
version of our Coq program, we can

4

Wang, Cao, Mohan, and Hobor.
"Certifying Graph-Manipulating C Programs
via Localizations within Data Structures"
OOPSLA 2019

Takeaway 1:
Since the source language and the language of reasoning coincide (Coq),

and the target language and the language of foreign functions coincide (C),
we can avoid the combined language approach.

link that with our C program and reason
about the combined program, using the
Verified Software Toolchain (VST), which
includes a program logic for C, based on
separation logic.

So I want this to be takeaway one:
<click> Since the source language of
our compiler and our language of
reasoning coincide (they are both Coq),
and the target language of our compiler
and our language of foreign functions
coincide (they are both C), we can
avoid the traditional approach to multi-
language semantics.

Just to get a better sense of the big
picture,
<click> we also have a verified garbage

collector implementation, thanks to Wang
et al. We build our work upon their graph
library.

And this setup constitutes our project,
VeriFFI,<click> which is a Verified
Foreign Function Interface between
Coq and C, where you can call C
functions from Coq.

Coq program components are proved
correct directly in Coq.
C program components are locally
proved correct using the Verified

github.com/CertiCoq/VeriFFI

5

https://github.com/CertiCoq/VeriFFI

Software Toolchain (VST).
The connection is made via VST function
specifications that are generated by our
system.

Let’s dig a little deeper into our setup.

Suppose we want to write a program
that uses machine integers. Until
recently, that wasn’t possible, you’d
have to use an inductive type for
integers in your program. There are
hacks you can do in extraction but
those can disregard the hard-earned
guarantees you got, through the

.

Module Type UInt63.
Parameter uint63 : Type.
Parameter from_nat : nat -> uint63.
Parameter to_nat : uint63 -> nat.
Parameter add : uint63 -> uint63 -> uint63.
Parameter mul : uint63 -> uint63 -> uint63.

End UInt63.

user's Coq code

abstract type
operations

6

C functionsproofs about
C functions

functional model
in Coq

Coq proofs about
client programs

Takeaway 2:
VeriFFI allows the user to reason conventionally

in Coq and VST separately and connects these proofs together.

proofs you finished through blood, sweat
and tears. We don’t want that! Here is the
setup we propose.

We define an API for unsigned 63-bit
integers in the standard way: as a module
type in Coq, which is like a module
signature in ML.
<click> We have an abstract type, and
some operations defined on that abstract
type.

<click> We want to write proofs about this
interface, so we give a purely functional
definition of this interface, and we can
reason about client programs of this
interface using that functional model.
<click> and all that reasoning is plain,
conventional Coq!

<click> On the other hand, we write
foreign functions that satisfy this interface,
and we prove that these functions play
nicely with the Coq program compiled to
C via CertiCoq, and that they play nicely
with the functional model.
<click> and all that reasoning is a
conventional VST proof!

<click> All the required mechanisms in the
middle are generated by our system,
VeriFFI.
This is takeaway two:
VeriFFI allows you to do conventional
reasoning in Coq and VST separately,
and connects these proofs together.

Let’s start with the operational side.
<click> We declare an axiom for the
type itself and the operations on it, in
order to tell Coq that they don’t have a
plain Coq implementation. These
functions will be realized when we
compile to C and link with the foreign
functions written in C. This is standard
practice in Coq when you want to
define foreign functions as well.

user's Coq code

Module C : UInt63.
Axiom uint63 : Type.
Axiom from_nat : nat -> uint63.
Axiom to_nat : uint63 -> nat.
Axiom add : uint63 -> uint63 -> uint63.
Axiom mul : uint63 -> uint63 -> uint63.

End C.

7

value uint63_from_nat(value n) {
// …

}

value uint63_to_nat(struct thread_info *tinfo,
value t) {

// …
}

value uint63_add(value n, value m) {
// …

}

value uint63_mul(value n, value m) {
// …

}

user's C code

Definition dot_product
(xs ys : list C.uint63) : C.uint63 :=

List.fold_right C.add
(C.from_nat 0)
(zip_with C.mul xs ys).

CertiCoq Compile dot_product.
CertiCoq Generate Glue [nat, list].

Coq client of foreign functions

CertiCoq Register
[C.from_nat => "uint63_from_nat"
, C.to_nat => "uint63_to_nat" with tinfo
, C.add => "uint63_add"
, C.mul => "uint63_mul"
] Include ["prims.h"].

<click> We register these references with
Coq, and actually provide the C
implementations of these functions.
<click> Now we are free to write our own
functions that use integers. Like this dot
product function on lists of integers. We
can then compile this function to C using
CertiCoq. This is enough for the
operational part of the foreign function
interface! We’re now conceptually at the
state of the art for 1995!

Now, let’s talk about the correctness of
these functions. How do we know that the
C functions we wrote are 1) safe, and 2)
functionally correct? Our idea is to write
and prove VST specifications about these
C functions that express that. Let us start
with the functional correctness.

To reason about the functional
correctness of the C function, we
must write a purely functional model in
plain Coq, of what these C functions
actually do. This can be a module that
implements the module type we had
before.

In this module we define the integer
type to be the inductive natural

user's Coq code

8

Module FM : UInt63.
Definition uint63 : Type := {n : nat | n < (2^63)}.
Definition from_nat (n : nat) : uint63 :=
(Nat.modulo n (2^63); ...).

Definition to_nat (i : uint63) : nat :=
let '(n; _) := i in n.

Definition add (x y : uint63) : uint63 :=
let '(xn; x_pf) := x in
let '(yn; y_pf) := y in
((xn + yn) mod (2^63); ...).

(* ... *)
End FM.

functional
model

number type with a bound. We define its
operations to respect modulo wrapping,
just like machine integers. If we were to
actually run this, it would have terrible
performance, but that is okay, since this is
only for the proofs, and it is an easier
interface to write proofs for!

Let’s attempt such a proof, we can
take to_nat here as an example, which
is a function that converts a machine
integer to a Coq natural number.

We want to state as a specification
that the C implementation of to_nat
does the same thing as our functional
model definition of to_nat. Thankfully,
VST is a great tool for such proofs!

user's Coq code

Module C : UInt63.
Axiom uint63 : Type.
Axiom from_nat : nat -> uint63.
Axiom to_nat : uint63 -> nat.
Axiom add : uint63 -> uint63 -> uint63.
Axiom mul : uint63 -> uint63 -> uint63.

End C.

9

value uint63_from_nat(value n) {
// …

}

value uint63_to_nat(struct thread_info *tinfo,
value t) {

// …
}

value uint63_add(value n, value m) {
// …

}

value uint63_mul(value n, value m) {
// …

}

user's C code

Definition dot_product
(xs ys : list C.uint63) : C.uint63 :=

List.fold_right C.add
(C.from_nat 0)
(zip_with C.mul xs ys).

CertiCoq Compile dot_product.
CertiCoq Generate Glue [nat, list].

Coq client of foreign functions

CertiCoq Register
[C.from_nat => "uint63_from_nat"
, C.to_nat => "uint63_to_nat" with tinfo
, C.add => "uint63_add"
, C.mul => "uint63_mul"
] Include ["prims.h"].

If we were to write by hand, here’s
what that specification would look like.
There’s a lot here, and you don’t have
to follow the details. Very very roughly,
what we are saying here is this:
<click> Given some runtime info, and
an input to the functional model,
<click> if the C function takes a value
that corresponds to the functional
model input,

Definition uint63_to_nat_spec : ident * funspec :=
DECLARE _uint63_to_nat
WITH gv : gvars, g : graph, roots : roots_t, sh : share, x : FM.uint63 ,

p : rep_type, ti : val, outlier : outlier_t, t_info : thread_info
PRE [thread_info; int_or_ptr_type]
PROP (writable_share sh; @graph_predicate FM.uint63 g outlier x p)
PARAMS (ti, rep_type_val g p)
GLOBALS (gv)
SEP (full_gc g t_info roots outlier ti sh gv; mem_mgr gv)

POST [int_or_ptr_type]
EX (p' : rep_type) (g' : graph) (roots': roots_t) (t_info': thread_info),
PROP (@graph_predicate nat g' outlier (FM.to_nat x) p’;

gc_graph_iso g roots g' roots’;
frame_shells_eq (ti_frames t_info) (ti_frames t_info’))

RETURN (rep_type_val g' p’)
SEP (full_gc g' t_info' roots' outlier ti sh gv; mem_mgr gv).

user's Coq proof

We claim that
the function body

satisfies this spec.

FM.uint63

FM.uint63

FM.to_nat xnat

...

Given some runtime info,
and an input in the
functional model,

if the C function takes
a value that corresponds to
the functional model input,

then the C function
returns a value that
corresponds to the

functional model output.

Lemma body_uint63_to_nat :
semax_body Vprog Gprog f_uint63_to_nat uint63_to_nat_spec.

Proof. ... Qed.

10

<click> then the C function returns a value
that corresponds to the functional model
output.

There are a lot of details about how heap
graphs and their isomorphisms. See our
paper for the explanation.

<click> So far this is just the specification,
so we then claim that the C function body
follows this specification and write the
proof by hand.
The cool part is, if we have a complete
proof of this, that means our foreign
function is
1) type-safe
2) correct with respect to the functional
model.
(Though we do not have a proof of type-

safety since it requires reasoning across
meta-levels)

I know this spec is overwhelming.
<click> Thankfully only certain parts of it
vary from function to function. Maybe we
can find a way to account for these
variations. One idea is to keep them in a
record.

Here’s what that looks like.

We have a function description, which
includes everything we have to know
about this function. Most importantly,
it has
<click> a reified description of the
function type. Thanks to this
description, we can ensure that the
foreign function and the model

Definition to_nat_desc : fn_desc :=
{| fn_type_reified :=

ARG FM.uint63 opaque (fun _ =>
RES nat transparent)

; foreign_fn := C.to_nat
; model_fn := fun '(x; tt) => FM.to_nat x
; fn_arity := 1
; c_name := "int63_to_nat"
|}.

Lemma body_uint63_to_nat :
semax_body Vprog Gprog f_uint63_to_nat (funspec_of_foreign @C.to_nat).

Proof.
...

Qed.

user's Coq proof
function

description

generate function
specification

11

function in this record actually abide by
the type.

In the reified description, we have
<click> annotations of each component of
the type with a type class instance. In a
function description, we use these
instances to hold information about type-
specific memory representations.

<click> Once we finish the function
description, we can then compute a VST
specification from it and start writing our
proof.

Not to sound like an infomercial, but
there’s even more! We can also
generate the function description
automatically using the generator we
wrote with MetaCoq.

I want to talk a bit more about reified
descriptions, since I believe it’s one of
our scientific contributions.

MetaCoq Run (fn_desc_gen FM.to_nat C.to_nat "uint63_to_nat").

Lemma body_uint63_to_nat :
semax_body Vprog Gprog f_uint63_to_nat (funspec_of_foreign @C.to_nat).

Proof.
...

Qed.

user's Coq proof
generating the

function description

generate function
specification

12

This contribution comes from our
realization that we have a choice
about how we generate things.
We could choose to take foreign types
and functions and generate a scary
VST specification directly from that,
with a colossal metaprogram. Or for
parts where we write VST proofs by
hand, we would write a long proof
that’s hard to follow.

monolithic vs. distilled generation

13

writing by hand

foreign types
and functions

VST specifications

Problems
1. MetaCoq is "low level" by design.
2. Metaprograms are harder to reason about!
3. Requires a much deeper understanding of the system.

VST proofs

code generation
with metaprogramming

We can call that approach “monolithic
generation”.

But that’s not ideal: <click>
1. We use MetaCoq for code generation,
which includes a Coq plugin for compile-
time metaprogramming, like Template
Haskell. MetaCoq's representation of
Coq terms is "low level" by design.
Their main goal is to reason about
Coq’s metatheory so that’s
understandable, but this means it’s a
bit more cumbersome to use for code
generation.
2. Metaprograms are harder to reason
about! It is harder for us to tell if our
metaprogram generates the right
thing, and that it always works.

Reasoning from a meta-level above
can get clunky.
3. Writing the proofs this way requires
a much deeper understanding of how
everything works, which would render
our system unusable for most users.

Here’s what I suggest instead. We
come up with an intermediate
representation, that is, reified
descriptions.
<click> We can generate these
descriptions using compile-time
metaprogramming.
<click> But for the rest, we do not
need compile-time metaprogramming.
We can write Coq functions that take

monolithic vs. distilled generation

14

foreign types
and functions

VST specifications

VST proofs

code generation
with metaprogramming

writing by handreified descriptions

computation

these descriptions and compute whatever
we need. This way we isolate the
metaprogram to the first half of
generation. Or we can write VST proofs
with these abstractions, which makes
them easier to write.

Okay, now we’re ready to see what a
reified description is.

As a metaprogramming term,
reifying means representing a
language construct as an explicit
object in a language. Here are we
trying to define an inductive type in
Coq, that describes different
components of a Coq constructor
type or a Coq function type.

15

Inductive reified (ann : Type -> Type) : Type :=

| TYPEPARAM : (forall (A : Type) `(ann A), reified ann) -> reified ann

| ARG : forall (A : Type) `(ann A), (A -> reified ann) -> reified ann

| RES : forall (A : Type) `(ann A), reified ann.

VeriFFI’s generation library

For other mixes of deep and shallow embeddings, see:
“Outrageous But Meaningful Coincidences: Dependent Type-Safe Syntax and Evaluation”. McBride. 2010.
"Deeper Shallow Embeddings". Prinz, Kavvos, Lampropoulos. 2022.

Takeaway 3:
By making the describer and describee the same language (Coq), and
using higher-order abstract syntax, we can handle dependent types and

annotate each component in a concise and type-safe way.

annotated with
type class instances

Those components are the type
parameters, the arguments, and the
return type. We have a constructor for
each of these, which gives us the
benefits of deep embedding.

<click> But notice how these two
cases take a function as an argument.
Thanks to this higher-order abstract
syntax-like approach, we get the
benefits of a shallow embedding. Most
importantly, we get to annotate the
description with type class instances
that are actually indexed by the type of
the component.

<click> These annotations have

access to the same binder context as
the type component! This allows us to
describe even complicated dependent
types.

There are other approaches that try to
combine deep and shallow
embeddings. Their work is more
general than ours, which requires
complicated mechanisms like the
universe pattern. By not being general,
we avoid that complexity once again.
Here we are describing a part of Coq
within Coq, so we can annotate these
components with Coq type class
instances.

And that is the other takeaway:
<click> By making the describer and
describee the same language (they
are both Coq), and using HOAS, we
can handle dependent types and
annotate each component in a
concise and type-safe way.

And these descriptions can be
automatically generated from the
function types, using our generators
based on MetaCoq.

Well, why did we go through all this
trouble? What do reified descriptions
buy us? The most important aspect is
type-safety of our specifications.

If we have a description of a particular
function, like to_nat, we can recover
the original types from that.
Here we recompute the type of the
to_nat foreign function from its types’

C.uint63 -> nat

Compute (to_foreign_fn_type to_nat_desc).

Compute (to_model_fn_type to_nat_desc).

16

This is exactly the type of C.to_nat

What do reified descriptions buy us?
1. type safety

description. We can do the same thing for
the functional model type as well.
Thanks to this, we can build a larger,
dependently typed record that has a type
description and the functions that actually
are of that type.

The other thing we use reified
descriptions for is rewrites of foreign
function calls to functional model
calls.

Here’s the problem:
We know dependent type checking
involves evaluation! Our foreign
functions, on the other hand, do not
evaluate. So if we try to prove a

Lemma add_assoc : forall (x y z : nat),
C.to_nat (C.add (C.from_nat x) (C.add (C.from_nat y) (C.from_nat z))) =
C.to_nat (C.add (C.add (C.from_nat x) (C.from_nat y)) (C.from_nat z)).

Proof.

17

proofs about our Coq program

2. rewrites of foreign function calls to models

lemma involving foreign function calls, we
have a problem: We cannot unfold the
definitions and continue our proof…

Since these functions are axioms on
the Coq side, they get stuck! These
functions evaluate in a compiled
program, because then they are
realized by C functions, but that’s not
good enough for compile-time
evaluation of them! What do we do,
then?

Lemma add_assoc : forall (x y z : nat),
C.to_nat (C.add (C.from_nat x) (C.add (C.from_nat y) (C.from_nat z))) =
C.to_nat (C.add (C.add (C.from_nat x) (C.from_nat y)) (C.from_nat z)).

Proof.
unfold C.to_nat.

18

proofs about our Coq program

Error: C.to_nat is opaque.

2. rewrites of foreign function calls to models

Our solution to this is a rewrite
mechanism. We derive a way to
rewrite calls to the foreign functions
into calls to the functional model. If
you have proofs for the VST
specifications we generated earlier,
using these rewrite principles
becomes fair game.

Here we use our rewrite tactic. Notice

Lemma add_assoc : forall (x y z : nat),
C.to_nat (C.add (C.from_nat x) (C.add (C.from_nat y) (C.from_nat z))) =
C.to_nat (C.add (C.add (C.from_nat x) (C.from_nat y)) (C.from_nat z)).

Proof.
intros x y z.
props from_nat_spec.
props to_nat_spec.
props add_spec.
foreign_rewrites.

19

proofs about our Coq program

1 goal

x, y, z : nat
============================
FM.to_nat (FM.add (FM.from_nat x) (FM.add (FM.from_nat y) (FM.from_nat z))) =
FM.to_nat (FM.add (FM.add (FM.from_nat x) (FM.from_nat y)) (FM.from_nat z))

2. rewrites of foreign function calls to models

how our goal is now entirely about the
functional model, and from there it's
straightforward to prove this goal.

Before I finish the talk, I want to show
an example with side effects. Here is a
mutable array example.

We can define the operational side
with a free monad, and write an
interpreter for it in C. Though we
haven’t verified the interpreter in VST.

Module Type Array.
Parameter M : Type -> Type.
Parameter pure : forall {A}, A -> M A.
Parameter bind : forall {A B}, M A -> (A -> M B) -> M B.
Parameter runM :
forall {A} (len : nat) (init : elt), M A -> A.

Parameter set : nat -> elt -> M unit.
Parameter get : nat -> M elt.

End Array.

user's Coq code

Module C <: Array.
Inductive M : Type -> Type :=
| pure : forall {A}, A -> M A
| bind : forall {A B}, M A -> (A -> M B) -> M B
| set : nat -> elt -> M unit
| get : nat -> M elt.

Axiom runM :
forall {A} (len : nat) (init : elt), M A -> A.

End C.

20

typedef enum { PURE, BIND, SET, GET } m;

value array_runM(struct thread_info *tinfo,
value a, value len, value init,
value action) {

// …

switch (get_prog_C_MI_tag(action)) {
case PURE: { /* … */ }
case BIND: { /* … */ }
case SET: { /* … */ }
case GET: { /* … */ }

}

// …
}

user's C code

Definition incr (i : nat) : C.M unit :=
v <- C.get i ;;
C.set i (1 + v).

Coq client of foreign functions

CertiCoq Register
[C.runM => "array_runM" with tinfo
] Include ["prims.h"].

We can also prove properties about
client programs using the rewrite
principles.

21

proofs about our Coq program

1 goal

n, len : nat
bound : n < len
init, to_set : elt
============================
FM.runM len init (FM.bind (to (FM.M unit) (C.M unit) (C.set n to_set))

(fun _ => to (FM.M elt) (C.M elt) (C.get n)))
= FM.runM len init (FM.pure to_set)

Lemma set_get :
forall (n len : nat) (bound : n < len) (init : elt) (to_set : elt),
(C.runM len init (C.bind (C.set n to_set) (fun _ => C.get n)))
=

(C.runM len init (C.pure to_set)).
Proof.
intros n len bound init to_set.
props runM_spec. foreign_rewrites.
props bind_spec. props pure_spec. foreign_rewrites.
props set_spec. props get_spec. foreign_rewrites.

So, to quickly repeat the main
takeaways:
1) We have a carefully chosen pair of
languages that helps us avoid the
combined language approach to
multi-language semantics.
2) VeriFFI allows the user to reason
conventionally in Coq and VST
separately, and connects these proofs
together.

22

Takeaways

1. Since the source language and the language of reasoning
coincide (Coq), and the target language and the language of
foreign functions coincide (C), we can avoid the combined
language approach to multi-language semantics.

2. VeriFFI allows the user to reason conventionally in Coq and
VST separately and connects these proofs together.

3. By making the describer and describee
the same language (Coq), and using HOAS,
we can handle dependent types and
annotate each component in a concise and type-safe way.

3) Once again, since we’re reasoning
about Coq values within Coq, when we
describe Coq values, our describer and
describee are the same, which allows
concise and type-safe annotations.

That is all I have time for today. For
details about the specifications, our
paper is the best source. For details
about metaprogramming, my
dissertation is the best source. Further
details of mutations and side effects
are also discussed in both.

There is some future work we want to
do.

23

See our paper
“A Verified Foreign Function Interface between Coq and C” for
• how exactly are the VST specifications are computed
• generated glue code, and its VST specifications
• more examples, such as

- primitive bytestrings and the correctness proofs of their operations
- I/O and mutable arrays

See my dissertation
“Foreign Function Verification Through Metaprogramming” for
• the metaprogramming details

Future work / work in progress
• End-to-end compiler correctness proof of CertiCoq

for open programs, and how it connects to VST
• VST correctness proofs for I/O and mutable arrays operations

1) Most importantly, we need to complete
the end-to-end compiler correctness
proof of CertiCoq for open programs, and
state how that connects to VST. We have
an incomplete, but mostly finished
compiler correctness proof for CertiCoq
for closed programs but that is now out of
date. We discuss in the paper how this
work can help us state the theorem for
open programs.
2) We want to finish the VST proofs for
programs with side effects and mutation.

I want to leave you with this final slide
of comparisons with similar projects,
that I have a hunch that most of the
questions will be about. Thank you
very much.

DON’T READ THIS, JUST AS A
REMINDER:

<click> Oeuf is a verified compiler for

Œuf
(2018)

Cogent
(2016-2022)

CakeML
(2014-2019)

Melocoton
(2023)

VeriFFI
(2017-2024)

project verified
compiler

certifying
compiler

+ verifiable FFI

verified compiler
+ FFI verifiable FFI verified compiler

+ verifiable FFI

language
pair

subset of
Coq and C

Cogent
and C ML and C toy subset of OCaml

and toy subset of C
Coq and

CompCert C

FFI aims for - safety correctness
+ safety

correctness
+ safety

correctness
+ safety

mechanism - -

not a program
logic but an
oracle about

FFIs

Iris’s separation logic
for multi-language

semantics
VST’s

separation logic

garbage
collection

optional
external GC

no
(unnecessary)

yes
(verified)

has a
nondeterministic

model

yes
(verified)

Comparison with other verified compilers / FFIs

24

a subset of Coq with no user-defined types,
dependent types, fixpoints, or pattern matching. It
doesn’t feature an FFI, but it allows verifying the
wrapper C program to be verified via VST. Oeuf allows
plugging in a garbage collector if you want to, but it’s
unverified.

<click> Cogent is a restricted functional language with a
certifying (translation validation) compiler. The language
has no general recursion or nested higher-order
functions, but it features a uniqueness type system that
makes garbage collection unnecessary. It allows users to
check if their C foreign functions satisfy this type system
and provides safety that way.

<click> CakeML is a verified compiler for ML. It allows C
foreign functions and accounts for the correctness of the
foreign functions in the compiler’s correctness theorem,
but it doesn’t have a program logic in which the user can
prove foreign functions correct. It has an oracle about
the behavior of foreign functions that the correctness
theorems depend on. And CakeML has a verified
garbage collector.

<click> Melocoton is a verified FFI project that allows
programs written in a toy subset of OCaml and a toy
subset of C to interact. Users can prove the correctness
and safety of their programs using Iris’s separation logic.
While Melocoton uses the multi-language semantics
based on a combined language, it tries to isolate users
from that and enable language-local reasoning for code
in OCaml or C. It uses a model of a garbage collector to
reason about multilanguage programs.

<click> In comparison, our work, VeriFFI, is built upon on
verified compiler, CertiCoq. It allows reasoning about
both correctness and safety of programs written in
Gallina and CompCert C. One can use VST’s separation
logic to reason about C foreign functions, and it features
a real, verified garbage collector.

